- ISBN:9787121305023
- 装帧:暂无
- 册数:暂无
- 重量:暂无
- 开本:32开
- 页数:425
- 出版时间:2016-11-01
- 条形码:9787121305023 ; 978-7-121-30502-3
本书特色
无监督学习是机器学习的一个重要分支,其在机器学习、数据挖掘、生物医学大数据分析、数据科学等领域有着重要地位。本书阐述作者近年在无监督学习领域所取得的主要研究成果,包括次胜者受罚竞争学习算法、K-means学习算法、K-medoids学习算法、密度学习算法、谱图聚类算法;*后介绍了无监督学习在基因选择、疾病诊断中的应用。
内容简介
无监督学习是机器学习的一个重要分支,其在机器学习、数据挖掘、生物医学大数据分析、数据科学等领域有着重要地位。本书阐述作者近年在无监督学习领域所取得的主要研究成果,包括次胜者受罚竞争学习算法、K-means学习算法、K-medoids学习算法、密度学习算法、谱图聚类算法;*后介绍了无监督学习在基因选择、疾病诊断中的应用。
目录
第1章 绪论 1
1.1 机器学习简介 1
1.2 无监督学习简介 2
第2章 数据预处理与样本相似性度量 31
2.1 数据预处理方法 31
2.2 样本相似性度量方法 48
第3章 聚类结果评价指标 55
3.1 内部评价指标 55
3.2 外部评价指标 72
第4章 竞争学习算法 87
4.1 传统次胜者受罚竞争学习算法 87
4.2 基于密度的次胜者受罚竞争算法 95
4.3 改进的密度次胜者受罚竞争学习算法 99
第5章 K-means学习算法 108
5.1 传统K-means聚类算法 108
5.2 密度RPCL优化的K-means聚类算法 111
5.3 基于样本分布密度的K-means聚类算法 118
5.4 *小方差优化初始聚类中心的K-means算法 125
5.5 全局K-means聚类算法 134
5.6 密度全局K-means聚类算法 136
5.7 粗糙K-means聚类算法 142
5.8 粒度K-means聚类算法 150
第6章 K-medoids学习算法 171
6.1 传统K-medoids聚类算法 171
6.2 快速K-medoids聚类算法 173
6.3 邻域K-medoids聚类算法 180
6.4 方差优化初始聚类中心的K-medoids算法 187
6.5 粒度K-medoids聚类算法 209
6.6 密度峰值优化初始聚类中心的K-medoids聚类算法 234
第7章 基于密度的无监督学习算法 259
7.1 DBSCAN算法 259
7.2 快速密度峰值发现聚类算法 262
7.3 K近邻优化的快速密度峰值发现聚类算法 265
7.4 模糊加权K近邻优化的密度峰值发现聚类算法 286
第8章 谱图聚类算法 302
8.1 *小生成树聚类算法 302
8.2 谱聚类算法 306
第9章 无监督学习方法的应用 318
9.1 基于无监督学习的基因选择 318
9.2 基于无监督学习的疾病诊断 338
9.3 无监督学习在生物医学大数据分析中的应用展望 404
作者简介
谢娟英,博士,副教授,硕士生导师,中国计算机学会高级会员。 "Health Information Science and Systems”副主编。主要研究方向为机器学习、数据挖掘、生物医学大数据分析、智能信息处理等。
-
造神:人工智能神话的起源和破除 (精装)
¥32.7¥88.0 -
大数据技术导论(第2版)
¥28.9¥41.0 -
人工智能
¥20.3¥55.0 -
人人都能学AI
¥40.4¥68.0 -
数据结构基础(C语言版)(第2版)
¥41.7¥49.0 -
系统架构设计师教程(第2版)(全国计算机技术与软件专业技术资格(水平)考试指定用
¥102.7¥158.0 -
过程控制技术(第2版高职高专规划教材)
¥27.6¥38.0 -
WPS OFFICE完全自学教程(第2版)
¥97.3¥139.0 -
智能视频目标检测与识别技术
¥43.5¥59.0 -
人工智能基础及应用
¥36.0¥48.0 -
深入浅出软件架构
¥117.2¥186.0 -
工业互联网安全创新技术及应用
¥79.4¥128.0 -
计算机网络基础(微课版)
¥39.0¥55.0 -
零信任架构
¥62.4¥89.0 -
剪映:即梦AI绘画与视频制作从新手到高手
¥66.0¥89.0 -
红蓝攻防 技术与策略(原书第3版)
¥95.9¥139.0 -
Web前端开发基础
¥37.5¥57.0 -
软件设计的哲学(第2版)
¥52.0¥69.8 -
人工智能的底层逻辑
¥58.7¥79.0 -
软件工程理论与案例
¥63.4¥99.0