×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
前馈神经网络分析与设计

前馈神经网络分析与设计

¥49.3 (3.9折) ?
1星价 ¥70.4
2星价¥70.4 定价¥128.0

温馨提示:5折以下图书主要为出版社尾货,大部分为全新(有塑封/无塑封),个别图书品相8-9成新、切口有划线标记、光盘等附件不全详细品相说明>>

暂无评论
图文详情
  • ISBN:9787030335937
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:24cm
  • 页数:11,280页
  • 出版时间:2012-10-01
  • 条形码:9787030335937 ; 978-7-03-033593-7

本书特色

本书系统地论述了前馈神经网络的主要理论、设计基础及应用实例,旨在使读者了解神经网络的发展背景和研究对象,理解和熟悉它的基本原理和主要应用,掌握它的结构模型和设计应用方法,特别是前馈神经网络的参数学习算法和结构设计方法,为深入研究和应用开发打下基础。为了便于读者理解,书中尽量避免烦琐的数学推导,加强了应用举例,并存内容的选择和编排上注意到读者初次接触新概念的易接受性和思维的逻辑性。作为扩充知识,书中还介绍了前馈神经系统的基本概念、体系结构、控制特性及信息模式。

内容简介

本书系统地论述了前馈神经网络的主要理论、设计基础及应用实例, 主要内容包括: 绪论、感知器神经网络、RBF神经网络、模糊神经网络 ; 前馈神经网络快速下降算法研究 ; 基于显著性分析的快速修剪型感知器神经网络等。

目录

总序 前言 第1章 绪论 1.1 引言 1.2 神经网络及其发展 1.2.1 神经网络的定义 1.2.2 神经网络的功能 1.2.3 神经网络的发展 1.2.4 神经网络的应用 1.3 人工神经网络的结构设计 1.3.1 人工神经网络的结构 1.3.2 前馈神经网络结构设计研究现状 1.4 本书主要内容 1.4.1 神经网络参数学习算法研究 1.4.2 神经网络结构设计方法研究 1.4.3 自组织神经网络结构算法研究 1.4.4 应用研究 参考文献 第2章 感知器神经网络 2.1 引言 2.2 感知器神经网络分析 2.2.1 单神经元分析 2.2.2 单层感知器神经网络 2.2.3 多层感知器神经网络 2.3 感知器神经网络学习算法 2.3.1 隐含层与输出层之间的权值修正 2.3.2 输人层与隐台层之间的权值修正 2.3.3 BP算法的改进 2.4 本章小结 附录A 数学基础 附录A.1 泰勒引理 附录A.2 泰勒定理和推论 参考文献 第3章 RBF神经网络 3.1 引言 3.2 RBF神经网络原理 3.2.1 插值计算 3.2.2 模式可分性 3.2.3 正规化法则 3.2.4 RBF神经网络结构 3.3 RBF神经网络学习算法 3.3.1 中心值学习策略 3.3.2 隐含层和输出层连接权值学习策略 3.4 本章小结 附录B 数学运算 附录B.1 域和向量空问 附录B.2 矩阵的表示和运算 附录B.3 矩阵的性质 附录B.4 矩阵范数的运算 参考文献 第4章 模糊神经网络 4.1 引言 4.2 模糊推理系统描述 4.2.1 模糊集合与隶属函数 4.2.2 模糊运算 4.3 模糊神经网络结构 4.4 模糊神经网络学习算法 4.5 本章小结 参考文献 第5章 前馈神经网络快速下降算法研究 5.1 引言 5.2 神经网络学习 5.2.1 神经网络结构及信息处理 5.2.2 神经网络学习算法分析 5.3 快速下降算法 5.3.1 快速下降算法描述 5.3.2 快速下降算法收敛性分析 5.4 仿真研究 5.4.1 感知器神经网络仿真研究 5.4.2 RBF神经网络仿真研究 5.5 本章小结 参考文献 第6章 前馈神经网络改进型递归*小二乘算法研究 6.1 引言 6.2 递归*小二乘算法 6.2.1 递归*小二乘算法描述 6.2.2 递归*小二乘算法分析 6.3 改进型递归*小二乘算法 6.3.1 改进型递归*小二乘算法描述 6.3.2 改进型递归*小二乘算法收敛性分析 6.4 改进型递归*小二乘算法的应用 6.4.1 非线性函数逼近 6.4.2 双螺旋模式分类 6.4.3 污泥膨胀预测 6.5 本章小结 参考文献 第7章 基于显著性分析的快速修剪型感知器神经网络 7.1 引言 7.1.1 增长型神经网络 7.1.2 修剪型神经网络 7.2 显著性分析 7.2.1 误差曲面分析 7.2.2 显著性分析算法 7.3 基于显著性分析的快速修剪算法 7.3.1 多层感知器神经网络 7.3.2 多层感知器神经网络快速修剪算法 7.3.3 仿真研究 7.4 本章小结 参考文献 第8章 增长一修剪型多层感知器神经网络 8.1 引言 8.2 敏感度计算 8.2.1 敏感度分析方法的分类 8.2.2 敏感度分析方法 8.2.3 敏感度计算 8.3 神经网络输出敏感度分析 8.3.1 敏感度分析的频域研究 8.3.2 神经网络输出敏感度分析 8.4 增长一修剪型多层感知器神经网络分析 8.4.1 隐含层神经元的敏感度 8.4.2 神经元增长和修剪 8.4.3 增长-修剪型感知器神经网络 8.4.3 敛性分析 8.5 增长-修剪型多层感知器神经网络应用 8.5.1 非线性函数逼近 8.5.2 数据分类 8.5.3 生化需氧量软测量 8.6 本章小结 参考文献 第9章 弹性RBF神经网络 9.1 引言 9.2 RBF神经网络描述 9.3 弹性RBF神经网络 9.3.1 神经元修复准则 9.3.2 神经网络结构优化设计 9.3.3 弹性RBF神经网络 9.3.4 收敛性分析 9.4 弹性RBF神经网络应用 9.4.1 非线性函数逼近 9.4.2 非线性系统建模 9.4.3 溶解氧模型预测控制 9.5 本章小结 附录C 熵 附录C.1 熵的概念 附录C.2 互信息 参考文献 第10章 自组织模糊神经网络 10.1 引言 10.2 模糊神经网络 10.3 自组织模糊神经网络分析 10.3.1 模糊神经网络结构优化 10.3.2 模糊神经网络自组织设计算法 10.3.3 收敛性分析 10.4 自组织模糊神经网络应用 10.4.1 非线性系统建模 10.4.2 Mackey-Glass时间序列系统预测 10.4.3 污水处理关键水质参数预测 1O.4.4 污水处理过程溶解氧控制 10.5 本章小结 参考文献 索引
展开全部

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航