×
岩石材料尺度效应及破断结构效应(Scale-Size and Structural Effects of Rock Ma

包邮岩石材料尺度效应及破断结构效应(Scale-Size and Structural Effects of Rock Ma

¥117.6 (7.0折) ?
1星价 ¥117.6
2星价¥117.6 定价¥168.0
暂无评论
图文详情
  • ISBN:9787302559320
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:其他
  • 页数:664
  • 出版时间:2020-08-01
  • 条形码:9787302559320 ; 978-7-302-55932-0

本书特色

本书内容新颖、丰富、实用,可供从事岩石参数测试、岩体力学试验、岩土工程和地下工程实践的科研工作者、高校师生以及现场工程技术人员参考和借鉴本书总结了作者近年来关于岩石力学基础理论、试验方法以及创新技术和工程应用的*新研究成果。 本书总结了作者近年来关于岩石力学基础理论、试验方法以及创新技术和工程应用的*新研究成果。

内容简介

本书总结了作者近年来关于岩石力学基础理论、试验方法以及创新技术和工程应用的近期新研究成果。全书分岩石试验尺度效应、岩石断裂韧度确定、岩石节理尺度效应、微震监测及应用、工程岩体结构效应5章,主要阐述了靠前外关于岩石材料断裂过程的尺度效应和结构效应的试验技术、强度准则、微震监测及工程应用、工程岩体结构失稳机制及控制技术等内容,附有大量的图表和工程实例。本书内容丰富、新颖、实用,可为从事隧道工程、岩土工程、采矿工程以及岩石力学的科研工作者、高等院校师生以及现场工程技术人员提供参考和借鉴。

目录

Contributors About the authors Preface Acknowledgments 1.Size effect of rock samples Hossein Masoumi 1.1 Size effect law for intact rock 1.1.1 Introduction 1.1.2 Background 1.1.3 Experimental study 1.1.4 Unified size effect law 1.1.5 Reverse size effects in UCS results 1.1.6 Contact area in size efects of point load results 1.1.7 Conclusions 1.2 Length-to-diameter ratio on point load strength index 1.2.1 Introduction 1.2.2 Background 1.2.3 Methodology 1.2.4 Valid and invalid failure modes 1.2.5 Conventional point load strength index size effect 1.2.6 Size effect of point load strength index 1.2.7 Conclusions 1.3 Plasticity model for size-dependent behavior 1.3.1 Introduction 1.3.2 Notation and unified size effect law 1.3.3 Bounding surface plasticity 1.3.4 Model ingredients 1.3.5 Model calibration 1.3.6 Conclusions 1.4 Scale-size dependency of intact rock 1.4.1 Introduction 1.4.2 Rock types 1.4.3 Experimental procedure 1.4.4 Comparative study 1.4.5 Conclusion 1.5 Scale effect into multiaxial failure criterion 1.5.1 Introduction 1.5.2 Background 1.5.3 Scale and Weibull statistics into strength measurements 1.5.4 The modified failure criteria 1.5.5 Comparison with experimental data 1.5.6 Conclusions 1.6 Size-dependent Hoek-Brown failure criterion 1.6.1 Introduction 1.6.2 Background 1.6.3 Size-dependent Hoek-Brown failure criterion 1.6.4 Example of application 1.6.5 Conclusions References Further reading 2.Rock fracture toughness Sheng Zhang 2.1 Fracture toughness of splitting disc specimens 2.1.1 Introduction 2.1.2 Preparation of disc specimens 2.1.3 Fracture toughness of five types of specimens 2.1.4 Load-displacement curve of disc splitting test 2.1.5 Comparison of disc splitting test results 2.1.6 Conclusions 2.2 Fracture toughness of HCFBD 2.2.1 Introduction 2.2.2 Test method and principle 2.2.3 HCFBD specimens with prefabricated cracks 2.2.4 Calibration of maximum dimensionless SIF Ymax 2.2.5 Results and analysis 2.2.6 Conclusions 2.3 Crack length on dynamic fracture toughness 2.3.1 Introduction 2.3.2 Dynamic impact splitting test 2.3.3 Results and discussion 2.3.4 DFT irrespective of configuration and size 2.3.5 Conclusions 2.4 Crack width on fracture toughness 2.4.1 Introduction 2.4.2 NSCB three-point flexural test 2.4.3 Width influence on prefabricated crack 2.4.4 Width influence of cracks on tested fracture toughness 2.4.5 Method for eliminating influence of crack width 2.4.6 Conclusions 2.5 Loading rate effect of fracture toughness 2.5.1 Introduction 2.5.2 Specimen preparation 2.5.3 Test process and data procesing 3.5.4 Results and analysis 2.5.5 Conclusions 2.6 Hole infiuence on dynamic fracture toughnes 2.6.1 Introduction 2.6.2 Dynamic cleaving specimens and equipment 2.6.3 SHPB test and data record 2.6.4 Dynamic finite element analysis 2.6.5 Results analysis and discussion 2.6.6 Conclusions 2.7 Dynamic fracture toughness of holed-cracked discs 2.7.1 Introduction 2.7.2 Dynamic fracture toughness test 2.7.3 Experimental recordings and results 2.7.4 Dynamic stress intensity factor in spatial-temporal domain 2.7.5 Conclusions 2.8 Dynamic fracture propagation toughness of P-CCNBD 2.8.1 Introduction 2.8.2 Experimental preparation 2.8.3 Experimental recording and data processing 2.8.4 Numerical calculation of dynamic stress intensity factor 2.8.5 Determine dynamic fracture toughness 2.8.6 Conclusions References Further reading 3.Scale effect of the rock joint Joung Oh 3.1 Fractal scale effect of opened joints 3.1.1 Introduction 3.1.2 Scale effect based on fractal method 3.1.3 Constitutive model for opened rock joints 3.1.4 Validation of proposed scaling relationships 3.1.5 Conclusions 3.2 Joint constitutive model for multiscale asperity degradation 3.2.1 Introduction 3.2.2 Quantification of iregular joint profile 3.2.3 Description of proposed model 3.2.4 Joint model validation 3.2.5 Conclusions 3.3 Shear model incorporating small-and large-scale iregularities 3.3.1 Introduction 3.3.2 Constitutive model for small-scale joints 3.3.3 Constitutive model for large-scale joints 3.3.4 Correlation with experimental data 3.3.5 Conclusions 3.4 Opening effect on joint shear behavior 3.4.1 Introduction 3.4.2 Constitutive model for joint opening effect 3.4.3 Opening model performance 3.4.4 Discussion 3.4.5 Conclusions 3.5 Dilation of saw-toothed rock joint 3.5.1 Introduction 3.5.2 Constitutive law for contacts in DEM 3.5.3 Model calibration 3.5.4 Direct shear test simulation 3.5.5 Conclusions 3.6 Joint mechanical behavior with opening values 3.6.1 Introduction 3.6.2 Normal deformation of opened joints 3.6.3 Direct shear tests 3.6.4 Results analysis and discussion 3.6.5 Conclusions 3.7 Joint constitutive model correlation with field observations 3.7.1 Introduction 3.7.2 Model description and implementation 3.7.3 Stability analysis of large-scale rock structures 3.7.4 Conclusions References Further reading 4.Microseismic monitoring and application Shuren Wang and Xiangxin Liu 4.1 Acoustic emission of rock plate instability 4.1.1 Introduction 4.1.2 Materials and methods 4.1.3 Results analysis 4.1.4 Discussion of the magnitudes of AE events 4.1.5 Conclusions 4.2 Prediction method of rockburst 4.2.1 Introduction 4.2.2 Microseismic monitoring system 4.2.3 Active microseismicity and faults 4.2.4 Rockburst prediction indicators 4.2.5 Conclusions 4.3 Near-fault mining-induced microseismic 4.3.1 Introduction 4.3.2 Engineering situations 4.3.3 Computational model 4.3.4 Result analysis and discussion 4.3.5 Conclusions 4.4 Acoustic emision recognition of diferent rocks 4.4.1 Introduction 4.4.2 Experiment preparation and methods 4.4.3 Results and discussion 4.4.4 AE signal recognition using ANN 4.4.5 Conclusions 4.5 Acoustic emission in tunnels 4.5.1 Introduction 4.5.2 Rockburst experiments in a tunnel 4.5.3 Experimental results 4.5.4 AE characteristics of rockburst 4.5.5 Discussion 4.5.6 Conclusions 4.6 AE and infrared monitoring in tunnels 4.6.1 Introduction 4.6.2 Simulating rockbursts in a tunnel 4.6.3 Experimental results 4.6.4 Rockburst characteristics in tunnels 4.6.5 Conclusions References Further reading 5.Structural effect of rock blocks Shuren Wang and Wenbing Guo 5.1 Cracked roof rock beams 5.1.1 Introduction 5.1.2 Mechanical model of a cracked roof beam 5.1.3 Instability feature of cracked roof beams 5.1.4 Mechanical analysis of roof rock beams 5.1.5 Conclusions 5.2 Evolution characteristics of fractured strata structures 5.2.1 Introduction 5.2.2 Engineering background 5.2.3 Mechanical and computational model 5.2.4 Results and discussion 5.2.5 Conclusions 5.3 Pressure arching characteristics in roof blocks 5.3.1 Introduction 5.3.2 Pressure arching characteristics 5.3.3 Evolution characteristics of pressure arch 5.3.4 Results and discussion 5.3.5 Conclusions 5.4 Composite pressure arch in thin bedrock 5.4.1 Introduction 5.4.2 Engineering background and pressure arch structure 5.4.3 Computational model and similar experiment 5.4.4 Results and discussion 5.4.5 Conclusions 5.5 Pressure arch performances in thick bedrock 5.5.1 Introduction 5.5.2 Engineering background 5.5.3 Pressure-arch analysis and experimental methods 5.5.4 Results and discussion 5.5.5 Conclusions 5.6 Elastic energy of pressure arch evolution 5.6.1 Introduction 5.6.2 Engineering background 5.6.3 Pressure-arch analysis and computational model 5.6.4 Simulation results and discussion 5.6.5 Conclusions 5.7 Height predicting of water-conducting zone 5.7.1 Introduction 5.7.2 High-intensity mining in China 5.7.3 OFT influence on FWCZ development 5.7.4 Development mechanism of FWCZ based on OFT 5.7.5 Example analysis and numerical simulation 5.7.6 Engineering analogy 5.7.7 Conclusions References Further reading Index
展开全部

作者简介

王树仁 博士,教授,主要从事岩土工程、岩石力学、采矿工程和数值模拟计算等方面的科研与教学工作。 主持及完成国家自然科学基金项目(51774112;51474188; 51074140; 51310105020)、河北省自然科学基金项目(E2014203012)、河北省科技支撑项目(072756183)和河南省科技厅国际合作项目(162102410027; 182102410060)等。基于上述研究,荣获国家科技进步二等奖1项,省部级二等奖5项,军队及省部级科技进步三等奖3项。荣获2015年澳大利亚政府资助奋进研究学者,现为河南省特聘教授和澳大利亚新南威尔士大学兼职教授。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航