×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
数据隐私与数据治理 概念与技术

数据隐私与数据治理 概念与技术

1星价 ¥62.3 (7.0折)
2星价¥62.3 定价¥89.0
暂无评论
图文详情
  • ISBN:9787111728184
  • 装帧:精装
  • 册数:暂无
  • 重量:暂无
  • 开本:32开
  • 页数:392
  • 出版时间:2023-07-01
  • 条形码:9787111728184 ; 978-7-111-72818-4

本书特色

本书以《中华人民共和国数据安全法》和《中华人民共和国个人信息保护法》为背景,旨在从概念和技术的角度对数据隐私与数据治理进行系统概述。**篇从历史与系统的角度介绍数据隐私与数据治理的基础,第二到四篇分别侧重大规模数据收集、机器学习,以及数据治理中的隐私问题,介绍其相应的技术基础,总结当下的关键问题与技术方案。本书从全新的数据生态的角度介绍数据隐私与数据治理,在内容介绍上,以技术与算法的讲解为主,辅以案例,详略得当。本书既可以供技术人员查阅,亦可以供感兴趣的普通用户阅读,建立对数据隐私与数据治理的基本认识,培养数据素养。

内容简介

本书以《中华人民共和国数据安全法》和《中华人民共和国个人信息保护法》为背景,旨在从概念和技术的角度对数据隐私与数据治理进行系统概述。首篇从历史与系统的角度介绍数据隐私与数据治理的基础,后三篇分别侧重大规模数据收集、机器学习,以及数据治理中的隐私问题,介绍其相应的技术基础,总结当下的关键问题与技术方案。本书从全新的数据生态的角度介绍数据隐私与数据治理,在内容介绍上,以技术与算法的讲解为主,辅以案例,详略得当。

目录

前言
**篇基础知识
第1章绪论2
11数据隐私的产生2
111社会发展视角下的隐私3
112数据发展视角下的隐私6
12数据隐私技术7
121模糊技术7
122扰动技术8
123加密技术9
124混合隐私技术10
125分布式计算框架11
126区块链技术12
127技术的比较12
13数据隐私面临的挑战13
131大数据隐私挑战13
132人工智能隐私挑战15
133数据治理挑战16
14小结18
参考文献19
第2章数据隐私的概念21
21引言21
22数据隐私的定义与特征22
221数据隐私的定义22
222数据隐私的基本特征22
223数据隐私和信息安全的区别22
23数据隐私的分类24
231数据隐私的构成要素24
232显式隐私与隐式隐私24
233数据隐私保护场景26
24数据隐私的框架29
241隐私风险监测31
242隐私风险评估31
243隐私主动管理32
244隐私溯源问责32
245法律法规保障33
25小结34
参考文献34
第3章数据治理的概念36
31引言36
32数据治理的体系38
33数据治理的法律法规39
34数据治理的实践42
35小结43
参考文献43
第二篇大数据隐私保护技术
第4章差分隐私方法46
41基础知识46
411基本定义47
412基础性质48
413常用扰动机制50
414应用场景53
42面向数据发布的隐私保护53
421直方图数据发布54
422划分发布58
43面向数据分析的隐私保护61
431分类分析61
432频繁模式挖掘62
433回归分析63
44小结65
参考文献65
第5章本地化差分隐私方法68
51基础知识69
511基本定义69
512基础性质70
513常用扰动机制71
514应用场景72
52基于简单数据集的隐私保护74
521频率统计74
522均值统计75
53基于复杂数据集的隐私保护77
531键值对数据的收集与发布78
532图数据的收集与发布81
533时序数据的收集与发布84
54小结86
参考文献87
第6章差分隐私与实用性89
61引言90
62隐私放大理论与方法91
621基于二次采样的隐私放大方法91
622基于混洗的隐私放大方法93
623其他隐私放大方法95
63差分隐私与密码学方法的结合95
631密码学方法改进差分隐私效用95
632差分隐私改进密码学协议效率100
64一种隐私实用化框架103
641ESA框架与定义103
642ESA中的隐私放大107
643混洗差分隐私方法108
65小结111
参考文献111
第三篇人工智能隐私保护技术
第7章机器学习中的隐私保护116
71引言117
72机器学习的隐私保护119
721同态加密119
722差分隐私119
73统计学习的隐私保护120
74深度学习的隐私保护124
741隐私算法设计124
742隐私风险分析125
75小结127
参考文献127
第8章联邦学习中的隐私保护129
81引言129
82隐私保护的联邦学习架构133
83基于差分隐私的联邦学习135
84基于安全聚合的联邦学习136
85个性化隐私保护与联邦学习138
851个性化隐私保护139
852个性化隐私保护的联邦学习141
86小结142
参考文献142
第四篇数据生态与数据治理
第9章数据要素市场146
91引言146
92数据交易148
921免费交易框架148
922付费交易框架149
923模型交易框架150
93数据流通152
94小结154
参考文献154
第10章数据垄断155
101引言155
102数据垄断现状157
1021定义与概念157
1022总体状况158
1023详情分析159
103数据垄断的成因与危害160
1031垄断成因160
1032垄断危害161
104数据垄断治理模式162
1041局部模式162
1042中介模式163
1043全局模式164
105小结165
参考文献165
第11章数据公平166
111引言166
112对公平的理解167
113公平计算方法168
1131蛋糕分割问题168
1132价格歧视问题169
1133算法偏见问题170
1134数据偏见问题171
114小结172
参考文献172
第12章数据透明174
121引言174
122数据透明的概念175
123数据透明框架176
124基于区块链的数据透明方案178
1241数据获取与共享透明179
1242数据云存储服务透明181
1243数据决策透明183
125小结184
展开全部

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航