
包邮DISTRIBUTED STOCHASTIC METHODS AND APPLICATION
1星价
¥95.4
(6.0折)
2星价¥95.4
定价¥159.0

暂无评论
图文详情
- ISBN:9787502498085
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 开本:其他
- 页数:267
- 出版时间:2024-03-01
- 条形码:9787502498085 ; 978-7-5024-9808-5
内容简介
Copyright ¤Metallurgical Industry Press 2024.All rights reserved.No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the copyright owner.
目录
Chapter 1Introduction1
1.1Distributed optimization4
1.1.1Distributed deterministic optimization4
1.1.2Distributed stochastic optimization10
1.2Distributed machine learning13
1.2.1Distributed regression problem14
1.2.2Distributed classification problem16
1.2.3Distributed clustering problems17
1.3Structure and work of this book17
Chapter 2Preliminaries19
2.1Convex analysis19
2.1.1Euclidean norm inequalities19
2.1.2Lipschitz continuous gradient22
2.2Probability theory23
Chapter 3Distributed Stochastic Sub-gradient Descent Algorithm24
3.1Distributed stochastic sub-gradient descent algorithm for
convex optimization24
3.1.1Background24
3.1.2Problem,algorithm and assumptions25
3.1.3Basic relations27
3.1.4Convergence in mean28
3.1.5Almost sure and mean square convergence29
3.2Distributed stochastic sub-gradient descent algorithm for regression
estimation with incomplete data30
3.2.1Background31
3.2.2Problem formulation33
3.2.3Distributed adaptive gradient-based algorithm36
3.2.4Main results of DAGA38
3.2.5Simulations47
3.2.6Conclusion50
3.3Distributed classification learning based on nonlinear vector support
machines for switching networks51
3.3.1Background51
3.3.2Preliminary and SVM formulation53
3.3.3Distributed nonlinear SVM learning54
3.3.4Distributed stochastic sub-gradient based SVM algorithm58
3.3.5Simulations63
3.3.6Conclusion67
Chapter 4Distributed Mirror-descent Algorithm68
4.1Distributed stochastic mirror descent algorithm over time-varying
network68
4.1.1Background68
4.1.2Preliminaries and assumptions70
4.1.3Distributed stochastic mirror descent algorithm72
4.1.4Main result73
4.1.5Simulation78
4.1.6Conclusions79
4.2A Stochastic mirror-descent algorithm for solving AXB=C over an
multi-agent system80
4.2.1Background80
4.2.2Preliminaries81
4.2.3Problem formulation and algorithm design83
4.2.4Main result86
4.2.5Simulation95
4.2.6Conclusions96
4.3Distributed stochastic mirror descent algorithm for resource
allocation problem97
4.3.1Background97
4.3.2Preliminaries99
4.3.3Problem formulation and algorithm design100
4.3.4Main result103
4.3.5Simulation109
4.3.6Conclusions113
4.4Distributed communication-sliding algorithm for nonsmooth
resource allocation problem113
4.4.1Background113
4.4.2Preliminaries115
4.4.3Problem formulation and algorithm design119
4.4.4Main result122
4.4.5Simulation130
4.4.6Conclusion132
Chapter 5Distributed Subgradient-free Algorithm133
5.1Distributed subgradient-free stochastic optimization algorithm
for nonsmooth convex functions over time-varying nentworks133
5.1.1Background133
5.1.2Preliminaries136
5.1.3Distributed algorithm and hypotheses139
5.1.4Main results143
5.1.5Simulations154
5.1.6Conclusions158
5.2A zeroth-order algorithm to distributed optimization with
stochastic stripe observations158
5.2.1Background159
5.2.2Mathematical preliminaries161
5.2.3Formulation and algorithm162
5.2.4Main results166
5.2.5Simulation171
5.2.6Conclusion173
5.3Distributed online optimization with gradient-free design174
5.3.1Background175
5.3.2Notations and preliminaries176
5.3.3Formulation and algorithm178
5.3.4Main results181
5.3.5Simulation184
Chapter 6Distributed Stochastic Accelerated Descent Algorithm186
6.1Convergence analysis of accelerated distributed gradient methods
with random sleeping scheme186
6.1.1Background186
6.1.2Preliminaries and problem formulation188
6.1.3Main results189
6.1.4Conclusions200
6.2Distributed accelerated descent algorithm for energy resource
coordination in multi-agent integrated energy systems200
6.2.1Background201
6.2.2MA-IES structure and DERC modeling203
6.2.3Distributed algorithm for the DERC 208
6.2.4Case studies214
6.2.5Simulation 223
Chapter 7Distributed Algorithm in Machine Learning225
7.1Consensus-based EM algorithm for gaussian mixtures in
time-varying networks225
7.1.1Background225
7.1.2Preliminaries and problem formulation227
7.1.3Standard EM algorithm229
7.1.4Consensus-based jointly-connected EM algorithm231
7.1.5Simulation234
7.1.6Conclusion237
7.2Distributed boosting algorithm over multi-agent networks239
7.2.1Background239
7.2.2Preliminary and previous work241
7.2.3Distributed algorithm244
7.2.4Simulation246
7.2.5Conclusions249
References250
展开全部
本类五星书
浏览历史
本类畅销
-
造神:人工智能神话的起源和破除 (精装)
¥32.7¥88.0 -
大数据技术导论(第2版)
¥28.9¥41.0 -
人工智能
¥20.3¥55.0 -
人人都能学AI
¥40.4¥68.0 -
数据结构基础(C语言版)(第2版)
¥41.7¥49.0 -
系统架构设计师教程(第2版)(全国计算机技术与软件专业技术资格(水平)考试指定用
¥102.7¥158.0 -
过程控制技术(第2版高职高专规划教材)
¥27.6¥38.0 -
WPS OFFICE完全自学教程(第2版)
¥97.3¥139.0 -
智能视频目标检测与识别技术
¥43.5¥59.0 -
人工智能基础及应用
¥36.0¥48.0 -
深入浅出软件架构
¥117.2¥186.0 -
工业互联网安全创新技术及应用
¥79.4¥128.0 -
计算机网络基础(微课版)
¥39.0¥55.0 -
零信任架构
¥62.4¥89.0 -
剪映:即梦AI绘画与视频制作从新手到高手
¥66.0¥89.0 -
红蓝攻防 技术与策略(原书第3版)
¥95.9¥139.0 -
Web前端开发基础
¥37.5¥57.0 -
软件设计的哲学(第2版)
¥52.0¥69.8 -
人工智能的底层逻辑
¥58.7¥79.0 -
软件工程理论与案例
¥63.4¥99.0