模式识别与人工智能(基于MATLAB)(第2版)
- ISBN:9787302660873
- 装帧:平装-胶订
- 册数:暂无
- 重量:暂无
- 开本:其他
- 页数:452
- 出版时间:2024-06-01
- 条形码:9787302660873 ; 978-7-302-66087-3
本书特色
经典畅销书全新升级,内容全面提升,增加蚁群算法聚类设计、免疫算法、禁忌搜索算法等
内容简介
随着模式识别技术的迅猛发展,目前该技术已经成为当代高科技研究的重要领域之一,不仅取得了丰富的理论成果,而且其应用范围越来越广泛,几乎遍及各个学科领域.本书以实用性为宗旨,将理论与实践相结合,介绍了各种相关分类器设计。第1章介绍模式识别的概念、模式识别的方法及其应用。第2章讨论贝叶斯分类器的设计。首先介绍贝叶斯决策的概念,让读者对贝叶斯理论有所了解,然后介绍基于*小错误率和*小风险的贝叶斯分类器的设计,将理论应用到实践,让读者真正学会运用该算法解决实际问题。第3章讨论判别函数分类器的设计。判别函数包括线性判别函数和非线性判别函数,本章首先介绍判别函数的相关概念,然后介绍线性判别函数LMSE和Fisher分类器的设计及非线性判别函数SVM分类器的设计。第4章讨论聚类分析。聚类分析作为*基础的分类方法,涵盖了大量经典的聚类算法及衍生出来的改进算法。本章首先介绍相关理论知识,然后依次介绍K均值聚类、K均值改进算法、KNN聚类、PAM聚类、层次聚类及ISODATA分类器设计。第5章讨论模糊聚类分析。首先介绍模糊逻辑的发展、模糊数学理论、模糊逻辑与模糊推理等一整套模糊控制理论,然后介绍模糊分类器、模糊C均值分类器、模糊ISODATA分类器设计。第6章讨论模拟退火算法聚类设计。首先介绍模拟退火算法的基本原理、基本过程,然后介绍其分类器的设计。第7章介绍遗传算法聚类设计,包括遗传算法原理及遗传算法分类器设计的详细过程。第8章介绍蚁群算法聚类设计,包括蚁群算法的基本原理、基于蚁群基本算法的分类器设计和改进的蚁群算法MMAS的分类器设计。第9章介绍粒子群算法聚类设计,包括粒子群算法的运算过程、进化模型、原理及其模式分类的设计过程。第10章介绍免疫算法聚类设计,包括免疫算法的原理、流程、特点、关键参数说明和实现。第11章介绍禁忌搜索算法,包括禁忌搜索算法的理论和应用。第12章讨论神经网络聚类设计。首先介绍神经网络的概念及其模型等理论知识,然后介绍基于BP网络、Hopfield网络、RBF网络、GRNN、小波神经网络、卷积神经网络、模糊神经网络、自组织竞争网络、SOM网络、LVQ网络、PNN、CPN的分类器设计。在读者掌握基础理论后,通过实例可以了解算法的实现思路和方法; 进一步掌握核心代码编写,就可以很快掌握模式识别技术。
目录
-
全图解零基础word excel ppt 应用教程
¥12.0¥48.0 -
C Primer Plus 第6版 中文版
¥62.6¥108.0 -
零信任网络:在不可信网络中构建安全系统
¥34.2¥59.0 -
有限与无限的游戏:一个哲学家眼中的竞技世界
¥37.4¥68.0 -
硅谷之火-人与计算机的未来
¥20.3¥39.8 -
情感计算
¥66.8¥89.0 -
大模型RAG实战 RAG原理、应用与系统构建
¥74.3¥99.0 -
大学计算机基础实验教程(MS Office版)——面向数据分析能力培养
¥29.1¥39.8 -
LINUX企业运维实战(REDIS+ZABBIX+NGINX+PROMETHEUS+GRAFANA+LNMP)
¥51.8¥69.0 -
AI虚拟数字人:商业模式+形象创建+视频直播+案例应用
¥70.0¥89.8 -
LINUX实战——从入门到精通
¥52.4¥69.0 -
剪映AI
¥52.8¥88.0 -
快速部署大模型:LLM策略与实践(基于ChatGPT等大语言模型)
¥56.9¥79.0 -
数据驱动的工业人工智能:建模方法与应用
¥68.3¥99.0 -
数据存储架构与技术(第2版)
¥62.9¥89.8 -
纹样之美:中国传统经典纹样速查手册
¥76.3¥109.0 -
UG NX 12.0数控编程
¥24.8¥45.0 -
MATLAB计算机视觉与深度学习实战(第2版)
¥90.9¥128.0 -
UN NX 12.0多轴数控编程案例教程
¥24.3¥38.0 -
实战知识图谱
¥51.8¥69.0