《非一致格子超几何方程与分数阶差和分》简评
与 newton 和 leibniz 创立微积分同时, 分数阶微积分也被提出, 近几十年来其理论及其应用发展迅速. 程金发教授长期对离散复差分方程、离散分数阶微积分开展深入研究, 他在离散分数阶微积分理论研究上可以说是独树一帜的. 早在十年之前, 在一致格子的情形下, 程金发教授就合理地给出一种分数阶和分与差分, 并由此出版过一本有关该领域的专著, 这是国内外第一本相关理论方面的专著, 因此引起了同行的广泛关注和浓厚兴趣, 为学科的推广与发展起到了积极作用. 该书作者如今在非一致格子超几何差分方程与非一致格子离散分数阶差和分理论研究方面, 做出了系统独到的创新工作. 内容涉及非一致格子上超几何差分方程新的基本解基本公式等, 以及在非一致格子上合理给出离散分数阶微积分基本概念、性质、基本定理等. 该书的内容基本分为七章, 内容丰富. 这是作者关于非一致格子上最新研究成果总结, 由于非一致格子的复杂性, 这体现出作者扎实的基本知识和很强的科研创新能力. (1) 非一致格子上 gauss 型超几何复差分方程问题. 它分别由美国科学院数学院士 askey 和俄罗斯数学院士 nikiforov 等所开拓, 是一类最具一般性的复超几何方程, 许多特殊函数和正交函数都来自于该方程, 美国、俄罗斯两大数学门派都取得的许多非凡的重要成果. 作者经过多年的酝酿积累和静心探索, 给出了关于非一致格子上复超几何方程的一个基本公式, 这是一个不同于前人的基础性结果, 利用它可以得到比著名的 askey-wilson 多项式更一般的特殊函数, 是对一类特殊函数的贡献. (2) 非一致格子上复分数阶差分与和分基本问题, 属于最一般性分数阶差分问题. 目前国内外绝大多数研究者一般从事一致格子上的实分数阶差分方程研究,但非一致格子上的复差分方程研究难度更大更具挑战性, 更与国际前沿接轨. 在非一致格子上, 复分数阶和分以及差分又如何定义?这目前在国际上都是一个十分艰深的课题, 因为即使对正整数阶差分, nikiforov 率先得到了这个基本公式, 都是一个非凡的成果. 作者已经能够合理给出一种非一致格子上分数阶和分以及差分合理的定义 得到著名的 euler beta 公式以及 cauchy beta 复积分公式、taylor公式和 leibniz 公式在非一致格子上的模拟, 非一致格子上 abel 方程、广义中心差分等一类方程的求解等结果. (3) 书中还将非一致格子上的超几何差分方程与特殊函数、离散分数阶理论有机地联系在一起. 这些概念和公式、理论在国际上是属于独具创新性的, 为在非一致格子情形下研究复分数阶差分方程理论和离散分数阶微积分打开了一扇门. 总之, 该书在非一致格子情况下开展了复超几何差分方程、离散分数阶差和分的创新性研究, 相信将对该领域的新发展起到重要的推动作用. 该书适合数学、物理等研究工作者阅读参考, 同时也是一本相关领域研究生的阅读教材.
《非一致格子超几何方程与分数阶差和分》简评
与 newton 和 leibniz 创立微积分同时, 分数阶微积分也被提出, 近几十年来其理论及其应用发展迅速. 程金发教授长期对离散复差分方程、离散分数阶微积分开展深入研究, 他在离散分数阶微积分理论研究上可以说是独树一帜的. 早在十年之前, 在一致格子的情形下, 程金发教授就合理地给出一种分数阶和分与差分, 并由此出版过一本有关该领域的专著, 这是国内外第一本相关理论方面的专著, 因此引起了同行的广泛关注和浓厚兴趣, 为学科的推广与发展起到了积极作用. 该书作者如今在非一致格子超几何差分方程与非一致格子离散分数阶差和分理论研究方面, 做出了系统独到的创新工作. 内容涉及非一致格子上超几何差分方程新的基本解基本公式等, 以及在非一致格子上合理给出离散分数阶微积分基本概念、性质、基本定理等. 该书的内容基本分为七章, 内容丰富. 这是作者关于非一致格子上最新研究成果总结, 由于非一致格子的复杂性, 这体现出作者扎实的基本知识和很强的科研创新能力. (1) 非一致格子上 gauss 型超几何复差分方程问题. 它分别由美国科学院数学院士 askey 和俄罗斯数学院士 nikiforov 等所开拓, 是一类最具一般性的复超几何方程, 许多特殊函数和正交函数都来自于该方程, 美国、俄罗斯两大数学门派都取得的许多非凡的重要成果. 作者经过多年的酝酿积累和静心探索, 给出了关于非一致格子上复超几何方程的一个基本公式, 这是一个不同于前人的基础性结果, 利用它可以得到比著名的 askey-wilson 多项式更一般的特殊函数, 是对一类特殊函数的贡献. (2) 非一致格子上复分数阶差分与和分基本问题, 属于最一般性分数阶差分问题. 目前国内外绝大多数研究者一般从事一致格子上的实分数阶差分方程研究,但非一致格子上的复差分方程研究难度更大更具挑战性, 更与国际前沿接轨. 在非一致格子上, 复分数阶和分以及差分又如何定义?这目前在国际上都是一个十分艰深的课题, 因为即使对正整数阶差分, nikiforov 率先得到了这个基本公式, 都是一个非凡的成果. 作者已经能够合理给出一种非一致格子上分数阶和分以及差分合理的定义 得到著名的 euler beta 公式以及 cauchy beta 复积分公式、taylor公式和 leibniz 公式在非一致格子上的模拟, 非一致格子上 abel 方程、广义中心差分等一类方程的求解等结果. (3) 书中还将非一致格子上的超几何差分方程与特殊函数、离散分数阶理论有机地联系在一起. 这些概念和公式、理论在国际上是属于独具创新性的, 为在非一致格子情形下研究复分数阶差分方程理论和离散分数阶微积分打开了一扇门. 总之, 该书在非一致格子情况下开展了复超几何差分方程、离散分数阶差和分的创新性研究, 相信将对该领域的新发展起到重要的推动作用. 该书适合数学、物理等研究工作者阅读参考, 同时也是一本相关领域研究生的阅读教材.