×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
暂无评论
图文详情
  • ISBN:9787510078712
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:16开
  • 页数:310
  • 出版时间:2014-09-01
  • 条形码:9787510078712 ; 978-7-5100-7871-2

本书特色

雷蒙德所著《群论》旨在为物理学家介绍群理论的许多有趣的数学方面,同时将数学家带入物理应用。针对高年级本科生和研究生,书中给出了有限群和连续群的*全面的特点,并且强调在基础物理中的应用;展开讨论了有限群,重点强调了不可约表示和不变性;详细论述了李群,也用较多的笔墨讲述了Kac-Moody代数,包括Dynkin图。

内容简介

  《群论》旨在为物理学家介绍群理论的许多有趣的数学方面,同时将数学家带入物理应用。针对高年级本科生和研究生,书中给出了有限群和连续群的*全面的特点,并且强调在基础物理中的应用;展开讨论了有限群,重点强调了不可约表示和不变性;详细论述了李群,也用较多的笔墨讲述了Kac-Moody代数,包括Dynkin图。

目录

1 Preface: the pursuit of symmetries
2 Finite groups: an introduction
2.1 Group axioms
2.2 Finite groups of low order
2.3 Permutations
2.4 Basic concepts
2.4.1 Conjugation
2.4.2 Simple groups
2.4.3 Sylow's criteria
2.4.4 Semi-direct product
2.4.5 Young Tableaux

3 Finite groups: representations
3.1 Introduction
3.2 Schur's lemmas
3.3 The ,,44 character table
3.4 Kronecker products
3.5 Real and complex representations
3.6 Embeddings
3.7 Zn character table
3.8 Dn character table
3.9 Q2, character table
3.10 Some semi-direct products
3.11 Induced representations
3.12 Invariants
3.13 Coverings

4 Hilbert spaces
4.1 Finite Hilbert spaces
4.2 Fermi oscillators
4.3 Infinite Hilbert spaces

5 SU(2)
5.1 Introduction
5.2 Some representations
5.3 From Lie algebras to Lie groups
5.4 SU(2) → SU(1, 1)
5.5 Selected SU(2) applications
5.5.1 The isotropic harmonic oscillator
5.5.2 The Bohr atom
5.5.3 Isotopic spin

6 SU(3)
6.1 SU(3) algebra
6.2 α-Basis
6.3 β-Basis
6.4 α'-Basis
6.5 The triplet representation
6.6 The Chevalley basis
6.7 SU(3) in physics
6.7.1 The isotropic harmonic oscillator redux
6.7.2 The Elliott model
6.7.3 The Sakata model
6.7.4 The Eightfold Way

7 Classification of compact simple Lie algebras
7.1 Classification
7.2 Simple roots
7.3 Rank-two algebras
7.4 Dynkin diagrams
7.5 Orthonormal bases

8 Lie algebras: representation theory
8.1 Representation basics
8.2 A3 fundamentals
8.3 The Weyl group
8.4 Orthogonal Lie algebras
8.5 Spinor representations
8.5.1 SO(2n) spinors
8.5.2 SO(2n + 1) spinors
8.5.3 Clifford algebra construction
8.6 Casimir invariants and Dynkin indices
8.7 Embeddings
8.8 Oscillator representations
8.9 Verma modules
8.9.1 Weyl dimension formula
8.9.2 Verma basis

9 Finite groups: the road to simplicity
9.1 Matrices over Galois fields
9.1.1 PSL2(7)
9.1.2 A doubly transitive group
9.2 Chevalley groups
9.3 A fleeting glimpse at the sporadic groups

10 Beyond Lie algebras
10.1 Serre presentation
10.2 Affine Kac-Moody algebras
10.3 Super algebras

11 The groups of the Standard Model
11.1 Space-time symmetries
11.1.1 The Lorentz and Poincar6 groups
11.1.2 The conformal group
11.2 Beyond space-time symmetries
11.2.1 Color and the quark model
11.3 Invariant Lagrangians
11.4 Non-Abelian gauge theories
11.5 The Standard Model
11.6 Grand Unification
11.7 Possible family symmetries
11.7.1 Finite SU(2) and SO(3) subgroups
11.7.2 Finite SU(3) subgroups

12 Exceptional structures
12.1 Hurwitz algebras
12.2 Matrices over Hurwitz algebras
12.3 The Magic Square
Appendix 1 Properties of some finite groups
Appendix 2 Properties of selected Lie algebras
References
Index
展开全部

作者简介

Pierre Ramond(P.雷蒙德,美国)是国际知名学者,在数学和物理学界享有盛誉。本书凝聚了作者多年科研和教学成果,适用于科研工作者、高校教师和研究生。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航