- ISBN:9787308082648
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 开本:16开
- 页数:250
- 出版时间:2011-11-01
- 条形码:9787308082648 ; 978-7-308-08264-8
本书特色
Morphology Genetic Materials Templated from Nature Species
provides a comprehensive and up-to-date coverage of research on
bio-inspired functional materials including materials science and
engineering aspects of the fabrication, properties, and
applications.The book discusses bio-inspired strategies integrating
biotemplate,biomineralization, and biomimesis in nature, which are
adopted to fabricate functional materials with hierarchical
bio-architectures and interrelated outstanding performances, as
well as valuable applications in photoelectricity, photonics,
photocatalysis, chemical detection, bio-imaging, and photoelectron
transfer components/devices.
The book is intended for researchers and graduate students in the
fields of materials science, chemistry, nanotechnology, semiconduc
tor, biotechnology, environmental engineering, etc.
内容简介
Morphology Genetic Materials Templated from Nature Species provides a comprehensive and up-to-date coverage of research on bio-inspired functional materials including materials science and engineering aspects of the fabrication, properties, and applications.The book discusses bio-inspired strategies integrating biotemplate,biomineralization, and biomimesis in nature, which are adopted to fabricate functional materials with hierarchical bio-architectures and interrelated outstanding performances, as well as valuable applications in photoelectricity, photonics, photocatalysis, chemical detection, bio-imaging, and photoelectron transfer components/devices.
The book is intended for researchers and graduate students in the fields of materials science, chemistry, nanotechnology, semiconduc tor, biotechnology, environmental engineering, etc.
目录
1.1 Introduction
1.2 Morphogenetic Materials from Natural Plants
1.2.1 Synthesis of (Fe203), Nickel Oxide (NiO) and Zinc Oxide (ZnO) from Natural Plants
1.2.2 Biomorphic A1203 and SnO2 by Using Cotton as BioTemplates
1.2.3 Biomorphic Synthesis of Metal Oxide Doped with Metal(N-TiO2, Ag-A1203)
1.2.4 Biotemplate Fabrication of SnO2 and TiO2 Materials by a Sonochemical Method
1.2.5 Biomorphic Functional Metal Oxides from Plant Leaves
1.3 Applications of the Synthesized Biomorphic Materials
1.3.1 Adsorbents for Copper Ions Removal with Surface Functionalized Soybean Straw
1.3.2 Polymer Functionalized Activated Carbon (from Rice Husk) for Cu2 Removal
1.3.3 Magnetic Nanoparticles Functionalized Activated Carbon for Dye Removal
1.3.4 TiO2 with Hierarchical Structures Fabricated from Wood for Photocatalyst
1.3.5 Gas Sensing Properties of Wood-Templated Oxides
1.4 Summary
References
2 Morph-Genetie Materials Inspired from Butterfly Wing Scales
2.1 Introduction
2.2 Synthesis Approaches of Butterfly Wings Replicas
2.2.1 Chemical Solutions Soaking Method
2.2.2 Sonochemical Processing Method
2.2.3 Solvothermal Nano-Complex Processing Method
2.2.4 Summary
2.3 Optical Properties of Butterfly Wings, Hybrids or Replicas
2.3.1 Fabrication of Iridescent Zinc Oxide Replicas from Transparent Butterfly Wings Templates
2.3.2 Fabrication of Large-Area Iridescent Inorganic Replicas
2.3.3 Fabrication of Nanocomposite with Novel Optical Effect
2.4 Gas Sensor Properties of Butterfly Wings, Hybrids or Replicas
2.4.1 Characterization of the Porous Hierarchical Gas-Sensor Microstructures Template from Butterfly Wings
2.4.2 Research on the Gas-Sensor Properties of the SnO2 Replicas of Butterfly Wings
2.5 High Light Harvest Efficiency Photoanode Used in Solar Cells
2.6 Conclusion
References
3 Morph-Genetic Materials Inspired Diverse Hierarchical Bio-Architectures
3.1 Introduction
3.2 Functional Metal Oxides Nano-Architectures with Eggshell Membrane Hierarchy
3.2.1 Biotemplating Sol-Gel Techniques for Hierarchical Metal Oxides
3.2.2 Hierarchical Nanostructured SnO2 as Gas Sensors
3.2.3 Pd-PdO Nanoclusters Reinforced Hierarchical TiO2 Films with Excellent Photocatalysis
3.3 Morph-Genetic Materials with Diatom as the Templates
3.4 Morph-Genetic Materials with Bacteria as the Templates
3.5 Hybrid Nanocomposites Derived from Reactive Natural Scaffolds
3.5.1 Natural Biofibers Based Hybrid Nanocomposites
3.5.2 Hierarchical Morph-Genetic Nanocomposites
3.5.3 Iridescent Nanocomposites: Novel Photonic Crystals
References
4 Morph-Genetic Composites
4.1 Morph-Genetic Composites Based on Plant Materials
4.1.1 Synthesis of Morph-Genetic Composites from Natural Plants
4.1.2 Properties of the Synthesized Biomorphic Materials
4.1.3 Summary
4.2 Functional Nanostructures/Bioscaffolds Nanocomposies
4.2.1 Natural Biofibers Based Optical Nanocomposites
4.2.2 Hybrid Nanocomposites with Natural Photonic Crystals as the Matrices
References
Index
-
发电厂电气部分
¥34.6¥58.0 -
植物进化的故事
¥19.9¥59.0 -
赶往火星:红色星球定居计划
¥44.5¥58.0 -
数控车工
¥5.9¥11.5 -
低空无人机集群反制技术
¥82.6¥118.0 -
数据驱动的剩余寿命预测与维护决策技术
¥63.4¥79.0 -
手术机器人导航与控制
¥127.4¥169.8 -
射频干扰袖珍手册
¥18.4¥29.0 -
汽车车身构造与修复
¥30.7¥45.0 -
群目标分辨雷达初速测量技术
¥42.4¥69.0 -
秸秆挤压膨化技术及膨化腔流道仿真研究
¥40.6¥55.0 -
NVH前沿科技与工程应用
¥109.7¥159.0 -
电力系统分析
¥23.8¥38.0 -
继电保护原理
¥30.4¥49.0 -
不确定条件下装备剩余寿命预测方法及应用
¥60.4¥99.0 -
船舶分段装配
¥58.6¥80.0 -
基于深度学习的复杂退化系统剩余寿命智能预测技术
¥54.4¥89.0 -
火星探测器轨道动力学与控制
¥59.8¥98.0 -
美军联合作战弹药保障
¥35.8¥58.0 -
工程造价全过程管理系列丛书 工程结算与决算 第2版
¥37.4¥56.0