×
暂无评论
图文详情
  • ISBN:9787122338198
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:其他
  • 页数:584
  • 出版时间:2018-05-01
  • 条形码:9787122338198 ; 978-7-122-33819-8

本书特色

本书对橡胶弹性的基本概念和基础行为进行了简单介绍,重点阐述了聚合:弹性体合成、新科学技术对弹性体结构的表征、橡胶弹性的分子基础、橡胶的黏弹性行为与混合物的动力学行为、未硫化橡胶的流变行为及加工、硫化、微小粒子填充物增强弹性体、橡胶复合科学、弹性体强度、聚合物的化学改性、弹性体合金、热塑性弹性体、轮胎工程、橡胶回收利用等内容。本译著知识体系一脉相承,内容具有先进性和权威性,对我国弹性体材料科学的发展具有重要参考价值和指导意义。本书适合高分子、材料、化工等领域从事弹性体研究、生产的科研人员和工程技术人员使用,同时可供高等院校高分子、材料、化工等相关专业的师生参考。

内容简介

本书对橡胶弹性的基本概念和基础行为进行了简单介绍,重点阐述了聚合:弹性体合成、进步科学技术对弹性体结构的表征、橡胶弹性的分子基础、橡胶的黏弹性行为与混合物的动力学行为、未硫化橡胶的流变行为及加工、硫化、微小粒子填充物增强弹性体、橡胶复合科学、弹性体强度、聚合物的化学改性、弹性体合金、热塑性弹性体、轮胎工程、橡胶回收利用等内容。本译著知识体系一脉相承,内容具有优选性和非常不错性,对我国弹性体材料科学的发展具有重要参考价值和指导意义。 本书适合高分子、材料、化工等领域从事弹性体研究、生产的科研人员和工程技术人员使用,同时可供高等院校高分子、材料、化工等相关专业的师生参考。

目录

第1章 橡胶弹性的基础概念和基本行为 001

1.1 绪论 /001

1.2 单一分子的弹性 /001

1.3 高分子三维网络的弹性 /004

1.4 与实验的比较 /007

1.5 橡胶弹性的连续体理论 /008

1.5.1 应力-应变关系 /009

1.6 二阶应力 /014

1.7 小变形下的弹性行为 /015

1.8 橡胶弹性中未解决的问题 /017

致谢 /017

参考文献 /018



第2章 聚合:弹性体合成021

2.1 引言 /021

2.2 聚合反应类型及动力学依据 /021

2.2.1 逐步加聚和逐步缩聚 /022

2.2.2 链式聚合 /023

2.3 加聚和缩聚 /024

2.4 自由基链式反应 /025

2.4.1 一般动力学过程 /025

2.4.2 分子量分布 /028

2.4.3 二烯烃聚合的特殊性质 /029

2.4.4 可控自由基聚合 /029

2.5 乳液聚合 /032

2.5.1 机理与动力学特征 /032

2.5.2 丁苯橡胶 /035

2.5.3 氯丁二烯乳液聚合 /037

2.6 共聚合 /039

2.6.1 动力学特征 /039

2.6.2 二烯烃的乳液共聚 /041

2.7 链式聚合中的阳离子聚合 /043

2.7.1 机理和动力学 /043

2.7.2 丁基橡胶 /046

2.7.3 活性阳离子聚合 /046

2.7.4 其他阳离子聚合:杂环单体 /047

2.8 阴离子链式聚合 /048

2.8.1 机理与动力学 /048

2.8.2 聚二烯烃链的微观结构 /052

2.8.3 丁二烯的共聚物 /054

2.8.4 末端官能化的聚二烯烃 /055

2.9 配位聚合制备立构规整的均聚物与共聚物 /055

2.9.1 机理与动力学 /055

2.9.2 乙丙橡胶 /057

2.9.3 聚二烯烃 /059

2.9.4 聚烯烃 /060

2.10 接枝共聚和嵌段共聚 /062

2.10.1 传统自由基反应的接枝共聚 /062

2.10.2 可控自由基聚合制备嵌段共聚物 /064

2.10.3 活性阴离子聚合制备嵌段共聚物 /065

2.10.4 阳离子聚合制备嵌段共聚物 /067

2.10.5 Ziegler-Natta(插入)聚合制备嵌段共聚物 /068

参考文献 /069



第3章 新科学技术对弹性体结构的表征089

3.1 前言 /089

3.2 化学组成 /089

3.3 重复单元的序列结构 /091

3.4 链结构 /094

3.4.1 分子量和分子量分布 /094

3.4.2 支化 /103

3.4.3 凝胶 /106

3.5 玻璃化转变和二次松弛过程 /107

3.6 形态学 /111

3.6.1 取向 /111

3.6.2 混合 /114

3.6.3 结晶度 /118

3.6.4 缺陷 /120

致谢 /121

参考文献 /121



第4章 橡胶弹性的分子基础133

4.1 前言 /133

4.2 典型的网状结构 /134

4.3 基本分子理论 /135

4.3.1 单链的弹性 /135

4.3.2 网链的弹性自由能 /137

4.3.3 减少的应力和弹性模量 /138

4.4 更高级的分子理论 /140

4.4.1 约束连接模型 /140

4.4.2 缠结模型 /142

4.4.3 缠结对模量的贡献 /143

4.5 现象学理论与分子结构 /144

4.6 网络和响应性凝胶的溶胀 /144

4.7 熵和焓对橡胶弹性的影响:力-温度的关系 /146

4.8 分子尺寸的直接测定 /147

4.9 单分子弹性 /148

4.9.1 高斯与非高斯效应 /148

参考文献 /149



第5章 橡胶的黏弹性行为与混合物的动力学行为153

5.1 简介 /153

5.2 标准定量J(T)、G(T)、G*(ω)和 L(lgλ)、H(lgτ)的定义 /157

5.2.1 蠕变和恢复 /157

5.2.2 应力松弛 /158

5.2.3 动态力学测试 /158

5.3 玻璃化转变温度 /160

5.4 Tg以上的黏弹性行为 /161

5.4.1 时间和频率依赖的等温测试 /161

5.4.2 温度依赖性 /162

5.4.3 平衡柔量Je /163

5.5 其他模型弹性体的黏弹性行为 /164

5.5.1 氟化氢弹性体 /164

5.5.2 氨基甲酸乙酯交联的聚丁二烯弹性体 /168

5.5.3 不同弹性体的比较 /170

5.5.4 其他黏弹性测试方法 /171

5.6 黏弹性机制和异常现象的理论解释 /171

5.6.1 低分子量聚合物的热流变简易性的分类 /171

5.6.2 弹性体的热流变简易性 /176

5.6.3 带有交联密度的链段松弛时间和JG松弛时间的变化 /177

5.6.4 连接动力学 /177

5.7 高度非对称的聚合共混物的组成动力学 /180

5.7.1 在高度非对称的聚合共混物中分子间耦合的链段松弛和链间的耦合动力学 /180

5.7.2 聚合物共混物的异常组分动力学 /182

5.7.3 性质的解释 /201

5.7.4 总结 /215

参考文献 /216



第6章 未硫化橡胶的流变行为及加工223

6.1 流变学 /223

6.1.1 前言 /223

6.1.2 基本概念 /224

6.2 线性黏弹性 /226

6.2.1 材料常数 /226

6.2.2 玻尔兹曼叠加原理 /230

6.2.3 时间温度等效性 /232

6.2.4 分子量依赖关系 /237

6.2.5 应力双折射 /239

6.3 非线性黏弹性理论 /241

6.3.1 剪切变稀流动 /241

6.3.2 填料颗粒 /244

6.3.3 共混物 /247

6.4 工程分析 /249

6.4.1 无量纲量 /249

6.4.2 实验原理 /250

6.5 实际处理注意事项 /253

6.5.1 混合 /253

6.5.2 挤出膨胀 /254

6.5.3 黏性 /255

致谢 /256

参考文献 /257



第7章 硫化265

7.1 介绍 /265

7.2 概述 /265

7.3 硫化剂对硫化的影响 /266

7.4 硫化过程的表征 /267

7.5 无加速硫黄硫化 /269

7.6 加速硫黄硫化 /271

7.6.1 硫黄硫化与促进剂之间的化学反应 /275

7.6.2 延迟加速硫化 /277

7.6.3 锌在苯并噻唑作为硫化促进剂时所起的作用 /278

7.6.4 实现特殊硫化性质 /280

7.6.5 镀铜钢对附着力的影响 /280

7.6.6 硫化胶性能的影响 /281

7.6.7 各种不饱和橡胶在硫促进剂下的硫化反应 /284

7.6.8 可选择的硫促进剂体系的配方 /285

7.7 酚类硫化剂、苯醌衍生物或双马来酰亚胺硫化 /285

7.8 金属氧化物的作用 /289

7.9 有机过氧化物作用下的硫化反应 /291

7.9.1 不饱和烃的过氧化物硫化 /291

7.9.2 饱和烃类弹性体的过氧化物硫化反应 /292

7.9.3 硅橡胶的过氧化物硫化反应 /294

7.9.4 聚氨酯弹性体的过氧化物硫化反应 /294

7.9.5 过氧化物硫化反应配方 /294

7.10 动态硫化 /295

7.10.1 三元乙丙橡胶与聚烯烃的混合物 /296

7.10.2 丁腈橡胶与尼龙混合物 /296

7.10.3 其他动态硫化制备的弹性复合材料 /296

7.10.4 技术应用 /296

7.10.5 超高性能热塑性硫化橡胶 /297

参考文献 /297



第8章 微小粒子填充物增强弹性体301

8.1 简介 /301

8.2 填充剂的制备 /301

8.2.1 非补强填充剂 /301

8.2.2 补强型填充剂 /302

8.3 填料的形态和理化特性 /303

8.3.1 填料形态特性 /303

8.3.2 分散性 /307

8.3.3 填料的物理化学性质 /307

8.4 弹性体的纳米复合材料和填料的混合 /311

8.4.1 分散性、填料粒径大小和距离 /311

8.4.2 填料与弹性体之间的相互作用 /312

8.5 橡胶填充后的力学性能 /315

8.5.1 胚体的力学性能 /315

8.5.2 硫化弹性体的力学性能 /316

8.5.3 应用 /321

参考文献 /322



第9章 橡胶复合科学329

9.1 介绍 /329

9.2 聚合物 /329

9.2.1 天然橡胶 /330

9.2.2 合成弹性体 /331

9.3 填充物体系 /339

9.3.1 炭黑性能 /340

9.3.2 二氧化硅与硅酸盐 /343

9.3.3 硅烷偶联剂化学 /345

9.3.4 其他填充系统 /347

9.4 稳定剂体系 /347

9.4.1 橡胶的降解 /347

9.4.2 抗降解剂的使用 /349

9.4.3 抗降解剂的类型 /349

9.5 硫化体系 /351

9.5.1 活化剂 /351

9.5.2 硫化剂 /354

9.5.3 促进剂 /355

9.5.4 缓凝剂和抗逆剂 /356

9.6 特殊的配料成分 /357

9.6.1 加工油 /357

9.6.2 增塑剂 /359

9.6.3 化学塑解剂 /359

9.6.4 树脂 /359

9.6.5 短纤维 /360

9.7 复合型开发 /360

9.8 复合制剂 /362

9.9 配料的环境要求 /363

9.10 总结 /364

参考文献 /365



第10章 弹性体强度367

10.1 简介 /367

10.2 裂缝的引发 /367

10.2.1 缺陷与应力集中 /367

10.2.2 应力和断裂能量准则 /369

10.2.3 样品的拉伸 /370

10.2.4 试验片的撕裂 /371

10.3 临界强度和延伸性 /372

10.4 裂纹的扩展 /375

10.4.1 概述 /375

10.4.2 黏弹性体 /375

10.4.3 应变结晶弹性体 /377

10.4.4 填料的强化 /378

10.4.5 反复拉伸:动态裂纹扩展 /379

10.4.6 热塑性弹性体 /381

10.5 拉伸断裂 /381

10.5.1 速度和温度的影响 /381

10.5.2 断裂点轨迹 /383

10.5.3 交联度的影响 /383

10.5.4 应变结晶弹性体 /384

10.5.5 能量耗散和强度 /384

10.6 反复施压:机械疲劳 /385

10.7 多轴应力下的破坏 /388

10.7.1 临界平面假说 /388

10.7.2 能量密度可用于推动裂缝前体增长 /388

10.7.3 压缩和剪切 /389

10.7.4 双轴拉伸 /389

10.7.5 三轴拉伸 /389

10.8 臭氧开裂现象 /390

10.9 磨损 /391

10.9.1 机械损失 /391

10.9.2 化学效应 /393

10.10 故障建模的计算方法 /393

致谢 /394

拓展阅读 /394

参考文献 /394



第11章 聚合物的化学改性399

11.1 前言 /399

11.2 聚合物骨架和链末端进行的化学改性 /400

11.3 聚合物的酯化、醚化和水解 /401

11.4 聚合物的加氢反应 /403

11.5 聚合物的脱卤化、消去及卤化反应 /404

11.5.1 聚氯乙烯的脱氯化氢反应 /404

11.5.2 热消除反应 /404

11.5.3 聚合物的卤化反应 /405

11.5.4 聚合物的环化反应 /406

11.6 其他双键加成反应 /406

11.6.1 乙烯衍生物 /406

11.6.2 普林斯反应 /408

11.7 聚合物的氧化反应 /408

11.8 聚合物的功能化反应 /409

11.9 聚合物的化学掺杂反应 /409

11.10 嵌段和接枝共聚反应 /410

11.10.1 对聚合物结构和性能的影响 /410

11.10.2 嵌段共聚物的合成 /411

11.10.3 例子 /411

11.10.4 影响物理化学反应的其他方法 /412

11.10.5 离子机理 /412

11.10.6 接枝共聚物的合成 /413

11.10.7 基础聚合物的性质 /418

参考文献 /419



第12章 弹性体合金421

12.1 简介 /421

12.2 热力学和溶解性参数 /425

12.2.1 Flory-Huggins模型 /425

12.2.2 溶解度和相互作用参数 /427

12.2.3 其他模型 /428

12.3 制备 /430

12.4 可混溶弹性体共混物 /430

12.4.1 热力学 /430

12.4.2 分析 /431

12.4.3 成分梯度共聚物 /432

12.4.4 特殊聚合物 /435

12.4.5 可反应性弹性体 /436

12.5 不相溶弹性体共混物 /436

12.5.1 构造 /436

12.5.2 混合形态动力学 /436

12.5.3 分析 /437

12.5.4 填料、固化剂和增塑剂的相间分布 /439

12.5.5 界面转移分析 /443

12.5.6 增溶作用 /444

12.5.7 不互溶的共混物的性质 /446

12.5.8 应用 /448

12.6 结论 /448

参考文献 /450



第13章 热塑性弹性体457

13.1 简介 /457

13.2 热塑性弹性体的合成 /461

13.2.1 逐步聚合反应:聚氨酯、聚醚酯、聚酰胺 /461

13.2.2 阴离子聚合:苯乙烯-二烯烃共聚物 /462

13.2.3 配位聚合 /463

13.2.4 自由基聚合 /464

13.2.5 分子量和链结构 /464

13.3 热塑性弹性体的形态学 /465

13.3.1 基本特征 /465

13.3.2 形貌研究 /468

13.4 结构的性能和作用 /477

13.4.1 基本特性 /477

13.4.2 力学性能 /479

13.4.3 热性能和化学性能 /481

13.5 相分离热力学 /482

13.6 热塑性弹性体表面 /485

13.6.1 基本特性 /485

13.6.2 表面研究 /486

13.7 流变学和加工 /490

13.8 应用 /492

参考文献 /494



第14章 轮胎工程503

14.1 引言 /503

14.2 轮胎类型和性能 /503

14.3 基本轮胎设计 /505

14.3.1 轮胎结构 /505

14.3.2 轮胎部件 /505

14.4 轮胎工程 /507

14.4.1 轮胎命名和尺寸 /507

14.4.2 轮胎模具设计 /509

14.4.3 线张力 /513

14.4.4 胎面设计模式 /514

14.5 轮胎材料 /516

14.5.1 轮胎加固 /516

14.5.2 钢帘线 /517

14.5.3 橡胶机理:黄铜线的附着力 /519

14.5.4 人造丝 /520

14.5.5 尼龙 /521

14.5.6 聚酯纤维 /521

14.5.7 玻璃纤维 /521

14.5.8 芳纶 /522

14.5.9 帘线制造 /522

14.5.10 面料加工 /523

14.5.11 附着功能 /524

14.5.12 橡胶配方 /525

14.6 轮胎设计 /525

14.6.1 实验室测试 /526

14.6.2 证明测试 /527

14.6.3 商业评估 /528

14.7 轮胎制造 /528

14.7.1 复合加工 /528

14.7.2 压延 /529

14.7.3 挤压 /530

14.7.4 轮胎组建 /531

14.7.5 轮胎*终检查 /531

14.8 总结 /532

参考文献 /532



第15章 橡胶回收利用533

15.1 简介 /533

15.2 轮胎翻新 /535

15.3 回收橡胶硫化胶 /535

15.3.1 再生技术 /535

15.3.2 表面处理 /537

15.3.3 研磨和粉碎技术 /538

15.3.4 脱硫技术 /541

15.4 回收橡胶的利用 /550

15.4.1 总论 /550

15.4.2 在新轮胎中的应用 /551

15.4.3 橡胶混合 /551

15.4.4 热塑性再生橡胶共混物 /555

15.4.5 再生橡胶改性混凝土 /564

15.4.6 回收橡胶改性沥青 /566

15.4.7 在土壤中使用废橡胶 /569

15.4.8 回收橡胶制成产品 /570

15.5 橡胶热解和焚化 /571

15.5.1 烃液和炭黑的回收 /571

15.5.2 轮胎衍生燃料 /573

15.6 结束语 /573

致谢 /574

参考文献 /574
展开全部

作者简介

伍一波,北京高等学校“青年英才计划”入选者,北京石油化工学院、北京化工大学硕士研究生导师,2013年晋升副教授,美国俄亥俄州立大学访问学者,北京市特种弹性体复合材料重点实验室主任助理。致力于可控/活性正离子聚合以及特种功能弹性材料的研究。主讲本科生主干核心课程《高分子物理》,研究生学位课程《高分子化学进展》。2013年入选北京高等学校“青年英才计划”;2009年获得第十届北京青年科技论文三等奖。在Polymer Chemistry等期刊共发表SCI收录论文10多篇,申请国家专利6项。兼任国家自然科学基金委员会项目函评专家,北京市自然基金项目函评专家以及多家国内外专业期刊审稿人。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航