计算机视觉——基于Python、Keras和TensorFlow的深度学习方法
1星价
¥46.9
(6.8折)
2星价¥46.9
定价¥69.0
暂无评论
图文详情
- ISBN:9787302599425
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 开本:其他
- 页数:176
- 出版时间:2022-05-01
- 条形码:9787302599425 ; 978-7-302-59942-5
本书特色
涵盖多种典型神经网络模型,构建计算机视觉系统解决方案 详解计算机视觉应用案例,从算法到编程,边学原理边实践 提供完整的源码及数据集资料
内容简介
本书聚焦深度学习架构和技术,使用Keras和TensorFlow库创建解决方案。涉及多种神经网络架构,包括LeNet、AlexNet、VGG、Inception、R-CNN、Fast R-CNN、Faster R-CNN、Mask R-CNN、YOLO和SqueezeNet,并通过实践了解如何基于Python实现深度学习架构。书中对所有代码片段进行详细分解并分析,以便可以在各自的环境中实现相同的原则。
目录
第1章计算机视觉和深度学习简介
1.1使用OpenCV处理图像
1.1.1使用OpenCV检测颜色
1.1.2使用OpenCV检测形状
1.1.3使用OpenCV检测人脸
1.2深度学习的基础知识
1.2.1神经网络背后的动力
1.2.2神经网络中的层
1.2.3神经元
1.2.4超参数
1.2.5ANN的连接与权重
1.2.6偏置项
1.2.7激活函数
1.2.8学习率
1.2.9反向传播
1.2.10过度拟合
1.2.11梯度下降算法
1.2.12损失函数
1.3深度学习的工作原理
1.3.1深度学习过程
1.3.2流行的深度学习程序库
1.4小结
习题
拓展阅读
第2章面向计算机视觉的深度学习
2.1使用TensorFlow和Keras进行深度学习
2.2张量
2.3卷积神经网络
2.3.1卷积
2.3.2池化层
2.3.3全连接层
2.4开发基于CNN的深度学习解决方案
2.5小结
习题
拓展阅读
第3章使用LeNet进行图像分类
3.1深度学习的网络架构
3.2LeNet架构
3.2.1LeNet1架构
3.2.2LeNet4架构
3.2.3LeNet5架构
3.2.4增强LeNet4架构
3.3使用LeNet创建图像分类模型
3.3.1使用LeNet进行MNIST分类
3.3.2使用LeNet进行德国交通标志分类
3.4小结
习题
拓展阅读
第4章VGG和AlexNet网络
4.1AlexNet和VGG神经网络模型
4.1.1AlexNet模型架构
4.1.2VGG模型架构
4.2使用AlexNet和VGG开发应用案例
4.2.1CIFAR数据集
4.2.2使用AlexNet模型处理CIFAR10数据集
4.2.3使用VGG模型处理CIFAR10数据集
4.3AlexNet模型和VGG模型的比较
4.4使用CIFAR100数据集
4.5小结
习题
拓展阅读
第5章使用深度学习进行目标检测
5.1目标检测
5.1.1目标分类、目标定位与目标检测
5.1.2目标检测的应用案例
5.2目标检测方法
5.3目标检测的深度学习框架
5.3.1目标检测的滑窗法
5.3.2边界框方法
5.3.3重叠度指标
5.3.4非极大性抑制
5.3.5锚盒
5.4深度学习网络架构
5.4.1基于区域的 CNN
5.4.2Fast RCNN
5.4.3Faster RCNN
5.4.4YOLO算法
5.4.5单阶段多框检测器
5.5迁移学习
5.6实时的目标检测Python实现
5.7小结
习题
拓展阅读
第6章人脸识别与手势识别
6.1人脸识别
6.1.1人脸识别的应用
6.1.2人脸识别的过程
6.2人脸识别的深度学习模式
6.2.1Facebook的DeepFace解决方案
6.2.2FaceNet的人脸识别
6.3FaceNet的Python实现
6.4手势识别Python解决方案
6.5小结
习题
拓展阅读
第7章基于深度学习的视频分析
7.1视频处理
7.2视频分析的应用
7.3梯度消失和梯度爆炸
7.3.1梯度消失
7.3.2梯度爆炸
7.4ResNet架构
7.5Inception网络
7.5.11×1卷积
7.5.2GoogLeNet架构
7.5.3Inception v2中的改进
7.5.4Inception v3模型
7.6视频分析
7.7使用Inception v3和ResNet创建Python解决方案
7.8小结
习题
拓展阅读
第8章端到端的网络模型开发
8.1深度学习项目需求
8.2深度学习项目的开发过程
8.2.1业务问题的定义
8.2.2源数据或数据收集阶段
8.2.3数据存储与管理
8.2.4数据准备和扩充
8.2.5图像样本增强
8.3深度学习的建模过程
8.3.1迁移学习
8.3.2常见错误/挑战和模型性能提高
8.3.3模型的部署与维护
8.4小结
习题
拓展阅读
附录A
A1CNN中的主要激活函数与网络层
A2Google Colab
展开全部
本类五星书
本类畅销
-
全图解零基础word excel ppt 应用教程
¥15.6¥48.0 -
有限与无限的游戏:一个哲学家眼中的竞技世界
¥37.4¥68.0 -
零信任网络:在不可信网络中构建安全系统
¥37.2¥59.0 -
硅谷之火-人与计算机的未来
¥20.3¥39.8 -
情感计算
¥66.8¥89.0 -
大模型RAG实战 RAG原理、应用与系统构建
¥69.3¥99.0 -
LINUX企业运维实战(REDIS+ZABBIX+NGINX+PROMETHEUS+GRAFANA+LNMP)
¥52.4¥69.0 -
AI虚拟数字人:商业模式+形象创建+视频直播+案例应用
¥68.2¥89.8 -
LINUX实战——从入门到精通
¥49.0¥69.0 -
UNIX环境高级编程(第3版)
¥164.9¥229.0 -
剪映AI
¥52.8¥88.0 -
快速部署大模型:LLM策略与实践(基于ChatGPT等大语言模型)
¥56.9¥79.0 -
数据驱动的工业人工智能:建模方法与应用
¥68.3¥99.0 -
深度学习高手笔记 卷2:经典应用
¥90.9¥129.8 -
纹样之美:中国传统经典纹样速查手册
¥81.8¥109.0 -
UG NX 12.0数控编程
¥24.8¥45.0 -
MATLAB计算机视觉与深度学习实战(第2版)
¥90.9¥128.0 -
UN NX 12.0多轴数控编程案例教程
¥24.3¥38.0 -
做好课题申报:AI辅助申请书写作
¥48.9¥69.8 -
微机组装与系统维护技术教程(第二版)
¥37.8¥43.0