- ISBN:9787576603620
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 开本:26cm
- 页数:331页
- 出版时间:2022-12-01
- 条形码:9787576603620 ; 978-7-5766-0362-0
内容简介
The motivation for this textbook started with the successful practice of machine learning in intelligent transportation systems. This book is intended to cover the basic concepts, typical machine learning algorithms and specific applications to transportation systems. This textbook focuses on typical machine learning algorithms, including feature engineering, instance -based learning, decision tree learning, support vector machine, neural networks, ensemble learning, outlier mining, clustering, imbalanced data classification, model evaluation and model interpretation.
目录
1.1 Definition of Machine Learning
1.2 History of Machine Learning
1.2.1 Artificial Intelligence, Machine Learning, and Deep Learning
1.2.2 Fields Related to Machine Learning
1.3 Workflow of Machine Learning
1.4 Types of Machine Learning Algorithms
1.4.1 Supervised Learning
1.4.2 Unsupervised Learning
1.4.3 Semi-supervised Learning
1.4.4 Reinforced Learning
1.5 Organization of the Textbook
1.6 Summary
Chapter 2 Feature Engineering
2.1 Data Normalization
2.1.1 Min-max Normalization
2.1.2 Standard Normalization
2.2 Data Discretization
2.2.1 Binning
2.2.2 Clustering Analysis
2.2.3 Entropy-based Discretization
2.2.4 Correlation Analysis
2.3 Feature Selection
2.3.1 Filter Feature Selection
2.3.2 Wrapper Feature Selection
2.3.3 Embedded Methods
2.4 Feature Extraction
2.4.1 Principal Components Analysis
2.4.2 Linear Discriminant Analysis
2.4.3 Autoencoder
2.5 Summary
Chapter 3 Instance-Based Learning
3.1 Overview of IBL
3.2 Components of KNN
3.2.1 Measure the Similarity between Instances
3.2.2 How to Choose K
3.2.3 Assign the Class Label
3.2.4 Time Complexity
3.3 Variants of KNN
3.3.1 Attribute Weighted KNN
3.3.2 Distance Weighted KNN
3.4 Strengths and Weaknesses of KNN
Chapter 4 Decision Tree Learning
4.1 Decision Tree Representation
4.1.1 Component of Decision Tree
4.1.2 How to use Decision Trees for Classification?
4.1.3 How to Generate Rules from Decision Trees?
4.1.4 Popular Algorithms to Generate Decision Trees
4.2 ID3 Algorithm
4.2.1 Select the best Attribute
4.2.2 Information Gain
4.2.3 Information Gain for Continuous-valued Attributes
4.2.4 Pseudoeode of ID3
4.3 C4.5 Algorithm
4.4 CART Algorithm
4.4.1 Gini Index
4.4.2 Binary Split Point for Muhivalued Attribute
4.4.3 Flowchart of Generating Tree
4.4.4 Develop Regression Trees by CART Algorithm
4.5 Overfitting and Tree pruning
4.5.1 Overfitting
4.5.2 Pruning Decision Trees
4.6 Pros and Cons of Decision Trees
……
Chapter 5 Support Vector Machines
Chapter 6 Neural Networks
Chapter 7 Ensemble Learning
Chapter 8 Outlier Mining
Chapter 9 Clustering
Chapter 10 Imbalanced Data Classification
Chapter 11 Model Evaluation
Chapter 12 Model Interpretation
Chapter 13 Application of Machine Learning in Transportation
Chapter 14 Course Projects
-
小家电使用与维修
¥4.3¥11.5 -
金属切削液配方与制备手册
¥142.6¥198.0 -
食品加工机械与设备(高等职业教育食品智能加工技术专业教材)
¥26.3¥46.0 -
发电厂电气部分
¥38.1¥58.0 -
植物进化的故事
¥19.9¥59.0 -
公路路基设计规范
¥54.9¥98.0 -
袖珍实用色谱
¥15.3¥45.0 -
再话土力学
¥54.9¥98.0 -
低空无人机集群反制技术
¥82.6¥118.0 -
奋楫笃行,臻于至善——广州公交服务再提升探索与实践
¥57.0¥80.0 -
中国近现代超级工程地理分布图
¥16.8¥20.0 -
手术机器人导航与控制
¥118.9¥169.8 -
汽车车身构造与修复
¥30.7¥45.0 -
群目标分辨雷达初速测量技术
¥42.4¥69.0 -
矿产勘查项目设计实习指导书
¥24.0¥32.0 -
秸秆挤压膨化技术及膨化腔流道仿真研究
¥45.0¥55.0 -
NVH前沿科技与工程应用
¥109.7¥159.0 -
继电保护原理
¥30.4¥49.0 -
孟山都的转基因之战
¥39.0¥69.0 -
船舶分段装配
¥58.6¥80.0