×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
数字图像处理(MATLAB版)-(第二版)-英文版

数字图像处理(MATLAB版)-(第二版)-英文版

1星价 ¥33.8 (3.8折)
2星价¥32.9 定价¥89.0

温馨提示:5折以下图书主要为出版社尾货,大部分为全新(有塑封/无塑封),个别图书品相8-9成新、切口有划线标记、光盘等附件不全详细品相说明>>

暂无评论
图文详情
  • ISBN:9787121195440
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:16开
  • 页数:756
  • 出版时间:2013-04-01
  • 条形码:9787121195440 ; 978-7-121-19544-0

本书特色

  本书是图像处理基础理论论述同以matlab为工具的软件实践方法相结合的**本书,集成了冈萨雷斯和伍兹所著的《数字图像处理(第三版)》一书中的重要内容和mathworks公司的图像处理工具箱。该版本包括重点术语的中文注释。   本书的主要特色:   (1) 自成体系,以工具书的风格书写   (2) 开发了100多个图像处理函数,同时讨论数字图像处理主流算法和matlab函数   (3) 涵盖雷登变换、几何变换、图像配准、独立与设备的彩色变换、针对视频的压缩函数;自适应阈值算法等   (4) 部分代码为matlab与c结合使用   (5) 书中包含gui详细设计   原书**作者rafael c. gonzalez是数字图像处理领域的权威人物,他在模式识别、图像处理和机器人领域编写或与人合著了100多篇技术文章、两本书和4本教材。冈萨雷斯博士的著作已被世界1000多所大学和研究所采用,深受读者喜爱。

内容简介

  这是图像处理基础理论论述同以matlab为主要工具的软件实践方法相对照的**本书。本书集成了冈萨雷斯和伍兹所著的《数字图像处理(第三版)》一书中重要的原文材料和mathworks公司的图像处理工具箱。本书的特色在于重点强调怎样通过开发新代码来加强这些软件工具。本书在介绍matlab编程基础知识之后,讲述了图像处理的主干内容,包括灰度变换、线性和非线性空间滤波、频率域滤波、图像复原与重建、几何变换和图像配准、彩色图像处理、小波、图像压缩、形态学图像处理、图像分割、区域和边界表示与描述。

目录


contents
preface
acknowledgements
about the authors
1 introduction
 preview
 1.1 background
 1.2 what is digital image processing?
 1.3 background on matlab and the image processing toolbox
 1.4 areas of image processing covered in the book
 1.5 the book web site
 1.6 notation
 1.7 fundamentals
 1.7.1 the matlab desktop
 1.7.2 using the matlab editor/debugger
 1.7.3 getting help
 1.7.4 saving and retrieving work session data
 1.7.5 digital image representation
 1.7.6 image i/o and display
 1.7.7 classes and image types
 1.7.8 m-function programming
 1.8 how references are organized in the book
 summary
2 intensity transformations and spatial filtering
 preview
 2.1 background
 2.2 intensity transformation functions
 2.2.1 functions imadjust and stretchlim
 2.2.2 logarithmic and contrast- stretching transformations
 2.2.3 specifying arbitrary intensity transformations
 2.2.4 some utility m-functions for intensity transformations
 2.3 histogram processing and function plotting
 2.3.1 generating and plotting image histograms
 2.3.2 histogram equalization
 2.3.3 histogram matching (specification)
 2.3.4 function adapthisteq
 2.4 spatial filtering
 2.4.1 linear spatial filtering
 2.4.2 nonlinear spatial filtering
 2.5 image processing toolbox standard spatial filters
 2.5.1 linear spatial filters
 2.5.2 nonlinear spatial filters
 2.6 using fuzzy techniques for intensity transformations andspatial
 filtering
 2.6.1 background
 2.6.2 introduction to fuzzy sets
 2.6.3 using fuzzy sets
 2.6.4 a set of custom fuzzy m-functions
 2.6.5 using fuzzy sets for intensity transformations
 2.6.6 using fuzzy sets for spatial filtering
 summary
3 filtering in the frequency domain
 preview
 3.1 the 2-d discrete fourier transform
 3.2 computing and visualizing the 2-d dft in matlab
 3.3 filtering in the frequency domain
 3.3.1 fundamentals
 3.3.2 basic steps in dft filtering
 3.3.3 an m-function for filtering in the frequency domain
 3.4 obtaining frequency domain filters from spatial filters
 3.5 generating filters directly in the frequency domain
 3.5.1 creating meshgrid arrays for use in implementingfilters
 in the frequency domain
 3.5.2 lowpass (smoothing) frequency domain filters
 3.5.3 wireframe and surface plotting
 3.6 highpass (sharpening) frequency domain filters
 3.6.1 a function for highpass filtering
 3.6.2 high-frequency emphasis filtering
 3.7 selective filtering
 3.7.1 bandreject and bandpass filters
 3.7.2 notchreject and notchpass filters
 summary
4 image restoration and reconstruction
 preview
 4.1 a model of the image degradation/restoration process
 4.2 noise models
 4.2.1 adding noise to images with function imnoise
 4.2.2 generating spatial random noise with a specified
 distribution
 4.2.3 periodic noise
 4.2.4 estimating noise parameters
 4.3 restoration in the presence of noise only—spatialfiltering
 4.3.1 spatial noise filters
 4.3.2 adaptive spatial filters
 4.4 periodic noise reduction using frequency domainfiltering
 4.5 modeling the degradation function
 4.6 direct inverse filtering
 4.7 wiener filtering
 4.8 constrained least squares (regularized) filtering
 4.9 iterative nonlinear restoration using thelucy-richardson
 algorithm
 4.10 blind deconvolution
 4.11 image reconstruction from projections
 4.11.1 background
 4.11.2 parallel-beam projections and the radon transform
 4.11.3 the fourier slice theorem and filteredbackprojections
 4.11.4 filter implementation
 4.11.5 reconstruction using fan-beam filteredbackprojections
 4.11.6 function radon
 4.11.7 function iradon
 4.11.8 working with fan-beam data
 summary
5 geometric transformatio
展开全部

作者简介

Rafael C. Gonzalez于福罗里达大学电子工程系获得博士学位,田纳西大学电气和计算机工程系教授,田纳西大学图像和模式分析实验室、机器人和计算机视觉实验室的创始人及IEEE会士。冈萨雷斯博士在模式识别、图像处理和机器人领域编写或鱼人合著了100多篇技术文章两本书和4本教材,他的书已被世界1000多所大学和研究所采用。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航