- ISBN:9787115356826
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 开本:16开
- 页数:210
- 出版时间:2014-07-01
- 条形码:9787115356826 ; 978-7-115-35682-6
本书特色
《机器学习系统设计》是实用的python机器学习教程,结合大量案例,介绍了机器学习的各方面知识。《机器学习系统设计》不仅告诉你“怎么做”,还会分析“为什么”,力求帮助读者掌握多种多样的机器学习python库,学习构建基于python的机器学习系统,并亲身实践和体验机器学习系统的功能。 《机器学习系统设计》适合需要机器学习技术的python开发人员、计算机科学研究人员、数据科学家、人工智能程序员,以及统计程序员阅读参考。
内容简介
大量python库的绝佳参考 用丰富的案例,细析机器学习技巧与方法 一个基于场景的教程,带你承袭正确的思维方式(数据探索)
目录
1.1 梦之队:机器学习与python
1.2 这本书将教给你什么(以及不会教什么)
1.3 遇到困难的时候怎么办
1.4 开始
1.4.1 numpy、scipy和matplotlib简介
1.4.2 安装python
1.4.3 使用numpy和scipy智能高效地处理数据
1.4.4 学习numpy
1.4.5 学习scipy
1.5 我们**个(极小的)机器学习应用
1.5.1 读取数据
1.5.2 预处理和清洗数据
1.5.3 选择正确的模型和学习算法
1.6 小结
第2章 如何对真实样本分类
2.1 iris数据集
2.1.1 **步是可视化
2.1.2 构建**个分类模型
2.2 构建更复杂的分类器
2.3 更复杂的数据集和更复杂的分类器
2.3.1 从seeds数据集中学习
2.3.2 特征和特征工程
2.3.3 *邻近分类
2.4 二分类和多分类
2.5 小结
第3章 聚类:寻找相关的帖子
3.1 评估帖子的关联性
3.1.1 不应该怎样
3.1.2 应该怎样
3.2 预处理:用相近的公共词语个数来衡量相似性
3.2.1 将原始文本转化为词袋
3.2.2 统计词语
3.2.3 词语频次向量的归一化
3.2.4 删除不重要的词语
3.2.5 词干处理
3.2.6 停用词兴奋剂
3.2.7 我们的成果和目标
3.3 聚类
3.3.1 k均值
3.3.2 让测试数据评估我们的想法
3.3.3 对帖子聚类
3.4 解决我们*初的难题
3.5 调整参数
3.6 小结
第4章 主题模型
4.1 潜在狄利克雷分配(lda)
4.2 在主题空间比较相似度
4.3 选择主题个数
4.4 小结
第5章 分类:检测劣质答案
5.1 路线图概述
5.2 学习如何区分出优秀的答案
5.2.1 调整样本
5.2.2 调整分类器
5.3 获取数据
5.3.1 将数据消减到可处理的程度
5.3.2 对属性进行预选择和处理
5.3.3 定义什么是优质答案
5.4 创建**个分类器
5.4.1 从k邻近(knn)算法开始
5.4.2 特征工程
5.4.3 训练分类器
5.4.4 评估分类器的性能
5.4.5 设计更多的特征
5.5 决定怎样提升效果
5.5.1 偏差?方差及其折中
5.5.2 解决高偏差
5.5.3 解决高方差
5.5.4 高偏差或低偏差
5.6 采用逻辑回归
5.6.1 一点数学和一个小例子
5.6.2 在帖子分类问题上应用逻辑回归
5.7 观察正确率的背后:准确率和召回率
5.8 为分类器瘦身
5.9 出货
5.10 小结
第6章 分类ii:情感分析
6.1 路线图概述
6.2 获取推特(twitter)数据
6.3 朴素贝叶斯分类器介绍
6.3.1 了解贝叶斯定理
6.3.2 朴素
6.3.3 使用朴素贝叶斯进行分类
6.3.4 考虑未出现的词语和其他古怪情况
6.3.5 考虑算术下溢
6.4 创建**个分类器并调优
6.4.1 先解决一个简单问题
6.4.2 使用所有的类
6.4.3 对分类器的参数进行调优
6.5 清洗推文
6.6 将词语类型考虑进去
6.6.1 确定词语的类型
6.6.2 用sentiwordnet成功地作弊
6.6.3 我们**个估算器
6.6.4 把所有东西融合在一起
6.7 小结
第7章 回归:推荐
7.1 用回归预测房价
7.1.1 多维回归
7.1.2 回归里的交叉验证
7.2 惩罚式回归
7.2.1 l1和l2惩罚
7.2.2 在scikit-learn中使用lasso或弹性网
7.3 p大于n的情形
7.3.1 基于文本的例子
7.3.2 巧妙地设置超参数(hyperparameter)
7.3.3 评分预测和推荐
7.4 小结
第8章 回归:改进的推荐
8.1 改进的推荐
8.1.1 使用二值推荐矩阵
8.1.2 审视电影的近邻
8.1.3 组合多种方法
8.2 购物篮分析
8.2.1 获取有用的预测
8.2.2 分析超市购物篮
8.2.3 关联规则挖掘
8.2.4 更多购物篮分析的高级话题
8.3 小结
第9章 分类iii:音乐体裁分类
9.1 路线图概述
9.2 获取音乐数据
9.3 观察音乐
9.4 用fft构建**个分类器
9.4.1 增加实验敏捷性
9.4.2 训练分类器
9.4.3 在多分类问题中用混淆矩阵评估正确率
9.4.4 另一种方式评估分类器效果:受试者工作特征曲线(roc)
9.5 用梅尔倒频谱系数(mfcc)提升分类效果
9.6 小结
第10章 计算机视觉:模式识别
10.1 图像处理简介
10.2 读取和显示图像
10.2.1 图像处理基础
10.2.2 加入椒盐噪声
10.2.3 模式识别
10.2.4 计算图像特征
10.2.5 设计你自己的特征
10.3 在更难的数据集上分类
10.4 局部特征表示
10.5 小结
第11章 降维
11.1 路线图
11.2 选择特征
11.2.1 用筛选器检测冗余特征
11.2.2 用封装器让模型选择特征
11.3 其他特征选择方法
11.4 特征抽取
11.4.1 主成分分析(pca)
11.4.2 pca的局限性以及lda会有什么帮助
11.5 多维标度法(mds)
11.6 小结
第12章 大数据
12.1 了解大数据
12.2 用jug程序包把你的处理流程分解成几个任务
12.2.1 关于任务
12.2.2 复用部分结果
12.2.3 幕后的工作原理
12.2.4 用jug分析数据
12.3 使用亚马逊web服务(aws)
12.3.1 构建你的**台机器
12.3.2 用starcluster自动创建集群
12.4 小结
附录a 更多机器学习知识
a.1 在线资源
a.2 参考书
a.2.1 问答网站
a.2.2 博客
a.2.3 数据资源
a.2.4 竞争日益加剧
a.3 还剩下什么
a.4 小结
索引
相关资料
机器学习本身很复杂,且在具体的数据分析实践中涉及大量复杂的数学知识。而本书尽量避开编程与机器学习算法实现的复杂性,让机器学习代码尽量简单。它的目的不是阐明机器学习“是什么”,而是解释“如何”编写算法,并帮助你思考“什么是*好的”编程方式。
——亚马逊读者评论
作者简介
Willi Richert 机器学习和机器人学博士,目前任职于微软Bing搜索核心研发团队。他从事多种机器学习领域的研究,包括主动学习和统计机器翻译。 Luis Pedro Coelho 计算生物学家,主要关注生物图像信息学和大规模图像数据的处理,致力于生物标本图像分析中机器学习技术的应用,他还是Python计算机视觉库mahotas的主要开发人员。他于1998年开始开发开源软件,2004年起从事Python开发,并为多个Python开源库贡献了代码。另外,Luis拥有机器学习领域世界领先的卡内基-梅隆大学的博士学位,并发表过多篇科学论文。
-
全图解零基础word excel ppt 应用教程
¥16.3¥48.0 -
C Primer Plus 第6版 中文版
¥62.6¥108.0 -
零信任网络:在不可信网络中构建安全系统
¥34.2¥59.0 -
有限与无限的游戏:一个哲学家眼中的竞技世界
¥37.4¥68.0 -
硅谷之火-人与计算机的未来
¥12.7¥39.8 -
情感计算
¥71.2¥89.0 -
大模型RAG实战 RAG原理、应用与系统构建
¥74.3¥99.0 -
大学计算机基础实验教程(MS Office版)——面向数据分析能力培养
¥29.1¥39.8 -
LINUX企业运维实战(REDIS+ZABBIX+NGINX+PROMETHEUS+GRAFANA+LNMP)
¥51.8¥69.0 -
AI虚拟数字人:商业模式+形象创建+视频直播+案例应用
¥65.6¥89.8 -
LINUX实战——从入门到精通
¥49.0¥69.0 -
剪映AI
¥52.8¥88.0 -
快速部署大模型:LLM策略与实践(基于ChatGPT等大语言模型)
¥56.9¥79.0 -
数据驱动的工业人工智能:建模方法与应用
¥68.3¥99.0 -
数据存储架构与技术(第2版)
¥62.9¥89.8 -
纹样之美:中国传统经典纹样速查手册
¥81.8¥109.0 -
Java面向对象程序设计基础教程
¥35.9¥59.8 -
UG NX 12.0数控编程
¥24.8¥45.0 -
MATLAB计算机视觉与深度学习实战(第2版)
¥90.9¥128.0 -
UN NX 12.0多轴数控编程案例教程
¥24.3¥38.0