×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
暂无评论
图文详情
  • ISBN:9787510078651
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:24开
  • 页数:606
  • 出版时间:2014-09-01
  • 条形码:9787510078651 ; 978-7-5100-7865-1

本书特色

this book provides a broad introduction to gauge field theories formulated on a space—time lattice, and in particular of qcd.it serves as a textbook for advanced graduate students, and also provides the reader with the necessary analytical and numerical techniques to carry out research on his own.although the analytic calculations are sometimes quite demanding and go beyond an introduction, they are discussed in sufficient detail, so that the reader can fill in the missing steps.the book also introduces the reader to interesting problems which are currently under intensive investigation.whenever possible, the main ideas are exemplified in simple models, before extending them to realistic theories.special emphasis is placed on numerical results obtained from pioneering work.these are displayed in a great number of figures.beyond the necessary amendments and slight extensions of some sections in the third edition, the fourth edition includes an expanded section on calorons—a subject which has been under intensive investigation during the last twelve years.

内容简介

本书旨在介绍时空格点上形成的规范场论,特别是QCD。作为一本研究生高年级的教材,书中也明确讲述了做研究必需的解析和数值技巧。尽管一些解析计算难度非常高,似乎超出了入门书籍的范围,但仍然做了足够详细的介绍,所以学习起来并不觉得准备不足。书中也介绍了一些当前正在被大力研究的课题,尽可能地将主要观点在延伸到实际理论之前,运用简单模型进行实例化。重点强调先前工作的数值结果,并用大量的图标展示。这是第四版,除了对第三版做了必要的修订和一些章节的适度扩展,还包括了一些有关Caloron的延伸章节,这个科目在过去的20年成为大家大力研究的兴趣点。 目次:引入;量子化中的路径积分方法;格点上的自由纯量场;格点上的费米子;格点上的Abel规范场和紧QED;格点紧QCD上的非Abel规范场;Wilson圈和静态夸克-反夸克势;简单模型中的Q势;格点QCD 的连续极限;格点和规则;强耦合扩展;跳频参数扩展;弱耦合扩展(Ⅰ),Ф3理论;弱耦合扩展(Ⅱ),格点QED;弱耦合扩展(Ⅲ)格点QCD;模特卡罗方法;蒙特卡洛计算的一些结果;可解波色子和费米子系统的热动力配分函数的路径积分表示;格点上和格点外的有限温度扰动理论;有限温度的非扰动QCD。 读者对象:物理、粒子物理、统计力学等专业的研究生和科研人员。

目录

dedication 
preface 
preface to the third edition 
preface to the second edition 
preface to the first edition 
1.introduction 
2.the path integral approach to quantization 
2.1the path integral method in quantum mechanics 
2.2 path integral representation of bosonic green functionsinfieldtheory 
2.3the transfer matrix 
2.4 path integral r,epresentation of fermionicgreen functions 
2.5discretizing space—time.the lattice as a regulator ofaquantum field theory 
3.the free scalar field on the lattice 
4.fermions on the lattice 
4.1the doubling problem 
4.2a closer look at fermion doubling 
4.3wilson fermions 
4.4staggered fermions 
4.5 technical details of the staggered fermion formulation 
4.6 staggered fermions in momentum space 
4.7ginsparg—wilson fermions.the overlap operator 
5.abelian gauge fields on the latticeand compact qed 
5.1 preliminaries 
5.2 lattice formulation of qed 
6.non abelian gauge fields on the latticecompact qcd 
7.the wilson loop and the staticquark—antiquark potential 
7.1a look at non—relativistic quantum mechanics 
7.2 the wilson loop and the static qq=potentialin qed 
7.3 the wilson loop in qcd 
8.the qq—potential in some simple models 
8.1the potentialin quenched qed 
8.2the potential in quenched compact qed2 
9.the continuum limit of lattice qcd 
9.1 critical behaviour of lattice qcd and the continuumlimit 
9.2 dependence of the coupling constant on the lattice spacingand the renormalization group β—function 
10.lattice sum rules 
10.1 energy sum rule for the harmonic oscillator 
10.2 the su(n) gauge action on an anisotropic lattice 
10.3 sum rules for the static qq—potential 
10.4determination of the electric, magnetic and anomalous contribution to the qq potential 
10.5 sum rules for the glueball mass 
11.the strong coupling expansion 
11.1the qq—potential to leading order in strong coupling 
11.2 beyond the leading approximation 
11.3the lattice hamiltonian in the strong coupling limitand the string picture of confinement 
12.the hopping parameter expansion 
12.1path integral r,epresentation of correlation functionsin terms of bosonic variables 
12.2hopping parameter expansion of the fermion propagatorin an externalfield 
12.3hopping parameter expansion of the effective action 
12.4 the hpe and the pauli exclusion principle 
13.weak coupling expansion (ⅰ).the φ3—theory 
13.1introduction 
13.2 weak coupling expansion of correlation functions in the φ3—theory 
13.3 the power counting theorem of reisz 
14.weak coupling expansion (ⅱ).lattice qed 
14.1 the gauge fixed lattice action 
14.2 lattice feynman rules 
14.3renormalization of the axial vector current in one—looporder 
14.4the abj anomaly 
15.weak coupling expansion (ⅲ).lattice qcd 
15.1the link integration measure 
15.2 gauge fixing and the faddeev—popov determinant 
15.3 the gauge field action 
15.4 propagators and vertices 
15.5 relation between al and the a—parameter of continuum qcd 
15.6universality of the axial anomaly in lattice qcd 
16.monte carlo methods 
16.1introduction 
16.2 construction principles for algorithms.markov chains 
16.3 the metropolis method 
16.4 the langevin algorithm 
16.5 the molecular dynamics method 
16.6 the hybrid algorithm 
16.7 the hybrid monte carlo algorithm 
16.8 the pseudofermion method 
16.9application of the hybrid monte carlo algorithmto systems with fermions 
17.some results of monte carlo calculations 
17.1 the string tension and the qq potentialin the su(3) gaugetheory 
17.2 the qq—potentialin full qcd 
17.3 chiral symmetry breaking 
17.4glueballs 
17.5 hadron mass spectrum 
17.6instantons 
17.7 flux tubes in qq and qqq—systems 
17.8the dual superconductor picture of confinement 
17.9 center vortices and confinement 
17.10 calorons 
18.path—integral representation of the thermodynamical partition functionfor some solvable bosonic and fermionicsystems 
18.1introduction 
18.2path—integral r;epresentation of the partition function in quantum mechanics 
18.3 sum rule for the mean energy 
18.4 test of the energy sum rule.the harmonic oscillator 
18.5the free relativistic boson gas in the path integral approach 
18.6the photon gas in the path integral approach 
18.7 functional methods for fermions.basics 
18.8path integral r,epresentation of the partition functionfor a fermionic system valid for arbitrary time—step 
18.9 a modified fermion action leading to fermion doubling 
18.10the free dirac gas.continuum approach 
18.11 dirac gas of wilson fermions on the lattice 
…… 
19.fimte temperature perturbation theory ofand on the lattice 
20.non—perturbative qcd at finite temperature 
appendix a 
appendix b 
appendix c 
appendix d 
appendix e 
appendix f 
appendix g 
references 
index
展开全部

作者简介

Heinz J.Rothe(H.J.罗斯,德国)是国际知名学者,在数学和物理学界享有盛誉。本书凝聚了作者多年科研和教学成果,适用于科研工作者、高校教师和研究生。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航