×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
谁说菜鸟不会数据分析(PYTHON篇)

谁说菜鸟不会数据分析(PYTHON篇)

1星价 ¥33.8 (4.9折)
2星价¥33.8 定价¥69.0

温馨提示:5折以下图书主要为出版社尾货,大部分为全新(有塑封/无塑封),个别图书品相8-9成新、切口有划线标记、光盘等附件不全详细品相说明>>

暂无评论
图文详情
  • ISBN:9787121364587
  • 装帧:简裝本
  • 册数:暂无
  • 重量:暂无
  • 开本:16开
  • 页数:232
  • 出版时间:2018-06-01
  • 条形码:9787121364587 ; 978-7-121-36458-7

本书特色

《谁说菜鸟不会数据分析(Python篇)》从解决工作实际问题出发,提炼总结工作中Python 常用的数据处理、数据分析实战方法与技巧。本书力求通俗易懂地介绍相关知识,在不影响学习理解的前提下,尽可能地避免使用晦涩难懂的Python 编程、统计术语或模型公式。

  《谁说菜鸟不会数据分析(Python篇)》定位是带领Python 数据分析初学者入门,并能解决学习、工作中大部分的问题或需求。入门后如还需要进一步进阶学习,可自行扩展阅读相关书籍或资料,学习是永无止境的,正所谓“师傅领进门,修行在个人”。

内容简介

本书从解决工作实际问题出发,提炼总结工作中Python 常用的数据处理、数据分析实战方法与技巧。本书力求通俗易懂地介绍相关知识,在不影响学习理解的前提下,尽可能地避免使用晦涩难懂的Python 编程、统计术语或模型公式。本书定位是带领Python 数据分析初学者入门,并能解决学习、工作中大部分的问题或需求。入门后如还需要进一步进阶学习,可自行扩展阅读相关书籍或资料,学习是永无止境的,正所谓“师傅领进门,修行在个人”。

目录

第1 章 数据分析概况 /1

1.1 数据分析定义(What) /2

1.2 数据分析作用(Why) /4

1.3 数据分析步骤(How) /5

1.3.1 明确分析目的和思路 /6

1.3.2 数据收集 /7

1.3.3 数据处理 /9

1.3.4 数据分析 /9

1.3.5 数据展现 /10

1.3.6 报告撰写 /10

1.4 数据分析的三大误区 /12

1.5 常用的数据分析工具 /13

1.5.1 Excel /13

1.5.2 SPSS /14

1.5.3 R语言 /15

1.5.4 Python语言 /16

第2 章 Python 概况 /17

2.1 Python简介 /18

2.2 Python特点 /19

2.3 Python模块 /20

2.3.1 函数 /20

2.3.2 模块 /24

2.4 Python使用场景 /27

2.5 Python 2与Python 3 /28

2.6 Python与数据科学 /29

2.7 Anaconda简介 /30

2.8 安装Anaconda /31

2.8.1 下载Anaconda /31

2.8.2 安装Anaconda /33

2.9 使用Anaconda /37

2.9.1 PyCharm 与Spyder /37

2.9.2 Anaconda 开始菜单 /38

2.9.3 Spyder 工作界面简介 /39

2.9.4 项目管理 /40

2.9.5 代码提示 /43

2.9.6 变量浏览 /44

2.9.7 图形查看 /44

2.9.8 帮助文档 /45

第3 章 编程基础 /47

3.1 数据类型 /48

3.1.1 数值型 /48

3.1.2 字符型 /50

3.1.3 逻辑型 /56

3.2 赋值和变量 /57

3.2.1 赋值和变量 /57

3.2.2 变量命名规则 /58

3.3 数据结构 /59

3.3.1 列表 /59

3.3.2 字典 /63

3.3.3 序列 /66

3.3.4 数据框 /72

3.3.5 四种数据结构的区别 /80

3.4 向量化运算 /81

3.5 for 循环 /83

3.6 Python 编程注意事项 /87

第4 章 数据处理 /90

4.1 数据导入与导出 /91

4.1.1 数据导入 /91

4.1.2 数据导出 /99

4.2 数据清洗 /100

4.2.1 数据排序 /101

4.2.2 重复数据处理 /102

4.2.3 缺失数据处理 /106

4.2.4 空格数据处理 /109

4.3 数据转换 /110

4.3.1 数值转字符 /110

4.3.2 字符转数值 /112

4.3.3 字符转时间 /113

4.4 数据抽取 /115

4.4.1 字段拆分 /116

4.4.2 记录抽取 /121

4.4.3 随机抽样 /127

4.5 数据合并 /130

4.5.1 记录合并 /130

4.5.2 字段合并 /133

4.5.3 字段匹配 /135

4.6 数据计算 /140

4.6.1 简单计算 /140

4.6.2 时间计算 /141

4.6.3 数据标准化 /142

4.6.4 数据分组 /144

第5 章 数据分析 /148

5.1 对比分析 /149

5.2 基本统计分析 /152

5.3 分组分析 /155

5.4 结构分析 /158

5.5 分布分析 /159

5.6 交叉分析 /162

5.7 RFM 分析 /164

5.8 矩阵分析 /173

5.9 相关分析 /176

5.10 回归分析 /178

5.10.1 回归分析简介 /178

5.10.2 简单线性回归分析 /180

5.10.3 多重线性回归分析 /185

第6 章 数据可视化 /189

6.1 数据可视化简介 /190

6.1.1 什么是数据可视化 /190

6.1.2 数据可视化常用图表 /190

6.1.3 通过关系选择图表 /191

6.2 散点图 /192

6.3 矩阵图 /203

6.4 折线图 /210

6.5 饼图 /215

6.6 柱形图 /217

6.7 条形图 /222
展开全部

节选

"前 言 《谁说菜鸟不会数据分析》系列图书自上市以来,已拥有数十万读者与粉丝,口口相传,成为职场人士案头**的参考用书。同时非常荣幸地获得书刊发行业协会授予的“全行业品种”称号,这离不开广大读者的厚爱与支持。有读者告诉我们,每次阅读都会有新的体会与收获,这让我们很开心。 随着云计算、互联网、电子商务和物联网的飞速发展,世界已经逐步迈入大数据时代。数据分析、机器学习等数据科学技术也相应流行起来,主流的数据科学技术,都将Python 作为主要的计算工具。Python 越来越被大家熟悉和认可,成为数据分析师的新宠儿,特别是在互联网行业。 市面上Python 数据分析的相关书籍基本上多数由IT 人员编写,写作角度相对侧重技术层面,很多基础知识点和编写的代码并无详细介绍,并且在数据分析思维体系方面相对薄弱,学习门槛非常高,让非IT 专业朋友学起来较等

作者简介

"方小敏,“数据分析实战”公众号主理人,机器学习工程师;曾服务于BAT等互联网企业,熟练掌握Python、R、Spark、Hive、TensorFlow等工具进行机器学习。 张文霖,新浪博客“小蚊子数据分析”博主,数据分析师,曾服务于靠前市场研究公司、中国移动等公司,具有多年移动互联网数据分析经验,略懂Excel、PPT、SPSS、水晶易表等工具 "

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航