
包邮无穷小-一个危险的数学理论如何塑造了现代世界

温馨提示:5折以下图书主要为出版社尾货,大部分为全新(有塑封/无塑封),个别图书品相8-9成新、切口有划线标记、光盘等附件不全详细品相说明>>
- ISBN:9787122338402
- 装帧:简裝本
- 册数:暂无
- 重量:暂无
- 开本:16开
- 页数:325
- 出版时间:2019-06-01
- 条形码:9787122338402 ; 978-7-122-33840-2
本书特色
★《图书馆杂志》2014年度*科学图书,一部波澜壮阔的数学史话。 ★知名历史学家与数学家、UCLA教授、《纽约时报》撰稿人阿米尔·亚历山大倾注20余年心血研究的重磅之作。 ★罕见地揭示了无穷小学说对17世纪欧洲政治的颠覆性影响。 ★独特视角解读为何17世纪末期意大利与英国走上截然不同的现代化道路,以及无穷小何以具有撼动早期现代世界基础的力量。 ★呈现了一场精彩纷呈的思想战争,探索了论战背后权力与科学之间的较量,展示了著名哲学家、数学家们,如培根、伽利略、托里切利、波义耳、卡瓦列里、卡文迪许、沃利斯、霍布斯、牛顿等人关于无穷小学说的深刻见解。
内容简介
1632年8月10日,5名身着黑袍的男子聚集在昏暗的罗马宫殿里,就一个看似简单的命题进行讨论: 一条连续的线由不同的、无穷小的部分组成。教士们大笔一挥,严令禁止无穷小的传播,宣布永远不许传授或提及无穷小概念。他们认为,它是危险和颠覆性的,是对当时信仰的极大威胁,即世界井然有序,由严格和不变的规则所统治约束。如果无穷小被接受,他们担心,整个世界将陷入混乱。 在《无穷小:一个危险的数学理论如何塑造了现代世界》中,享有盛誉的历史学家阿米尔·亚历山大披露了教士裁决背后的深层原因,并揭示了无穷小和不可分量学说是如何持续存在,并成为微积分和大多数现代数学与技术的基石的这段历史。事实上,并不是每个人都同意教士们的观点。欧洲各地的哲学家、科学家和数学家都将“无穷小”视为科学进步、思想多元的关键。正如亚历山大所揭示的,不久,这两个阵营就展开了一场战争,即欧洲的等级和秩序与多元化和变革间的斗争。 从德国的帝国城市到萨里的青山,从罗马的教皇宫殿到伦敦皇家学会的大厅,亚历山大向我们展示了一个数学概念上的分歧是如何演变成一场天地之争的精彩对决。 这场数学大战,主战场有两个:一个在意大利,正反两方分别是教会和伽利略及其门徒;另一个在英国,主要在托马斯·霍布斯和约翰·沃利斯之间展开。在意大利,无穷小的失败标志着这片土地作为欧洲文化中心统治地位的结束;在英国,无穷小的胜利帮助这个岛国走上了一条光明之路,使其成为世界上一个现代国家,也促成了我们这个现代世界的诞生。
目录
出场人物 - Ⅸ
时间轴 - ⅪⅩ
导 言
朝臣出使 - 001
无穷小悖论 - 007
失落的梦 - 010
**部分 对抗无序之战
第1章 依纳爵的孩子
罗马会议 - 015
皇帝与修道士 - 019
陷入混乱 - 023
希望之光 - 030
依纳爵的孩子 - 033
反击 - 039
学术帝国 - 040
混乱中的秩序 - 046
第2章 数学的秩序
教学秩序 - 049
一个怀才不遇的人 - 052
格里历 - 055
一场数学的胜利 - 057
数学的确定性 - 060
克拉维斯对抗神学家 - 065
欧几里得几何的关键 - 068
迟钝的野兽 - 071
第3章 数学的无序
科学家与红衣主教 - 076
悖论与无穷小量 - 081
虔诚的修道士 - 089
织线与书本的比喻 - 092
谨慎的不可分量论者 - 097
伽利略的*后弟子 - 100
21项证明 - 103
痴迷于悖论 - 107
第4章 生存还是灭亡
无穷小的危险 - 114
监督委员会 - 117
卢卡·瓦莱里奥的陨落 - 121
格里高利·圣文森特 - 123
失势 - 125
乌尔班八世的危机 - 131
裁定与禁令 - 135
被羞辱的侯爵 - 140
永久的解决办法 - 143
第5章 数学家之战
古尔丁交锋卡瓦列里 - 146
贝蒂尼之刺 - 153
温文尔雅的弗莱芒人 - 155
隐藏的对抗运动 - 158
背水一战 - 161
圣杰罗姆会的谢幕 - 166
两种现代性的梦想 - 170
秩序井然之地 - 173
第二部分 利维坦与无穷小
第6章 利维坦的到来
掘土派 - 179
无王之地 - 181
冬眠的熊 - 191
“龌龊、野蛮且短命” - 198
第7章 “几何学家”托马斯·霍布斯
迷恋上几何学 - 208
几何学的国家 - 212
无法解决的问题 - 215
化圆为方 - 218
无望的探寻 - 223
第8章 约翰·沃利斯是谁
一位年轻清教徒的教育 - 227
牧师与教授 - 237
科学的阴霾时期 - 242
第9章 数学的新世界
无穷多的线 - 254
实验数学 - 260
挽救 - 271
巨人与“毁谤者”之战 - 273
哪种数学 - 278
为未来而战 - 281
后记:两种现代性 - 285
注释 - 291
致谢 - 323
出场人物
节选
一名政治评论家在审视外国学术机构时会着眼于一个晦涩难懂的数学概念,这对于今天的我们来说,不仅令人吃惊,而且简直是有些匪夷所思。在我们看来,高等数学的概念是相当抽象和通用的,它们不可能与文化或者政治生活有
关。它们是那些训练有素的专业学者的专属领域,甚至不与现代的文化评论挂钩,更不用说那些政治人物了。但在早期的现代世界,情况却并非如此,索比耶远非唯一一个关注“无穷小”的非数学家。事实上,在索比耶生活的时代,拥有迥然不同的宗教和政治背景的欧洲思想家和学者们,都曾经不知疲倦地竞相企图扑灭不可分学说,并试着从哲学和科学方面考虑,来消除这种学说。在霍布斯与沃利斯就无穷小问题而争论不休的那些年里,SJ也正在开展针对无穷小的斗争。在法国,霍布斯的老相识笛卡尔在*初曾对无穷小表现出了相当大的兴趣,但*终还是改变了主意,并从他包罗万象的哲学体系中禁止了这一概念。甚至一直到18世纪30年代,乔治·贝克莱(George Berkeley)还在嘲笑数学家使用无穷小的行为,他称这些数学对象为“消失量之鬼”(the ghosts of departed quantities)。与这些反对者相对抗的是那个时代一些*杰出的数学家和哲学家,他们提倡使用无穷小的概念,除沃利斯之外,还包括伽利略及其追随者、伯纳德·勒·波维尔·德·丰特奈尔(Bernard Le Bovier de Fontenelle)、牛顿。
为什么这些早期现代世界*优秀的人才会为了这个“无穷小”概念斗争得如此激烈呢?其原因就是,这不仅仅是一个晦涩难懂的数学概念那么简单,它还关系到很多方面:这是一场关乎现代世界面貌的斗争。两大阵营在无穷小问题上针锋相对。其中的一方集结了等级制度和秩序的所有支持者。他们信仰统一而固定的世界秩序,信奉自然界和人类社会都应如此,强烈反对无穷小学说。另一方是相对“自由主义”的人,比如伽利略、沃利斯和牛顿的支持者们。他们信仰更加适度和更加灵活的秩序,从而能够接受一些其他的观点以及多样化的权力中心,他们提倡无穷小学说,同时提倡在数学中使用无穷小方法。这两个阵营的界线已经划定了,不管*终哪方取得胜利,都将在即将到来的世纪里,给这个世界留下其深深的烙印。
作者简介
阿米尔·亚历山大(Amir Alexander),历史学家和数学家、作家,在斯坦福大学和加州大学洛杉矶分校教授历史、哲学和科学史。他曾出版多部著作,他的**部著作《几何概览》(Geometrical Landscapes)展示了早期数学家如何把他们的研究看作是一次英勇的探索之旅,从而为现代数学奠定了基础。该书被《选择》杂志(Choice)誉为“一部杰出的开创性著作”。他也是《纽约时报》科学栏目的撰稿人。同时,他还在各种学术期刊上广泛发表文章,其作品曾刊登在《自然》(Nature)、《卫报》(The Guardian)以及其他一些出版物中。目前,他居住在加利福尼亚州洛杉矶市。
-
鸟与兽的通俗生活
¥12.9¥39.8 -
看花是种世界观
¥19.7¥58.0 -
那颗星星不在星图上-寻找太阳系的疆界
¥8.8¥29.0 -
你一定爱读的古怪科学
¥16.5¥49.8 -
我的世界观
¥10.4¥36.0 -
物种起源
¥10.0¥36.0 -
趣味代数学
¥14.7¥42.0 -
怪奇问题事件簿
¥13.5¥39.0 -
台湾自然札记
¥16.1¥56.0 -
蝴蝶效应之谜-走近分形与混沌
¥8.8¥29.0 -
世界之门:感官的故事
¥29.9¥59.0 -
科学全知道:那些尖端新奇的科学理论
¥14.5¥45.0 -
植物不简单
¥24.7¥65.0 -
图说时间简史
¥12.5¥46.0 -
现在有多长
¥16.4¥48.0 -
最冷最冷的冷门知识:话题达人无所不知的终极武器
¥13.6¥42.0 -
宇宙创世记
¥25.0¥49.0 -
地下世界(我们脚下的人类历史)
¥23.1¥69.0 -
你一定要懂的化学知识
¥11.6¥28.0 -
趣味力学
¥14.5¥36.0