×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
十二五普通高等教育本科重量规划教材模式识别与智能计算/MATLAB技术实现(第4版)/杨淑莹

十二五普通高等教育本科重量规划教材模式识别与智能计算/MATLAB技术实现(第4版)/杨淑莹

1星价 ¥49.1 (6.3折)
2星价¥49.1 定价¥78.0
图文详情
  • ISBN:9787121358661
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:其他
  • 页数:308
  • 出版时间:2018-01-01
  • 条形码:9787121358661 ; 978-7-121-35866-1

本书特色

本书内容新颖,实用性强,理论与实际应用密切结合,以手写数字识别为应用实例,介绍理论运用于实践的实现步骤及相应的Matlab代码,为广大研究工作者和工程技术人员对相关理论的应用提供借鉴。

内容简介

本书广泛吸取统计学、神经网络、数据挖掘、机器学习、人工智能、群智能计算等学科的优选思想和理论,将其应用到模式识别领域中;以一种新的体系,系统、全面地介绍模式识别的理论、方法及应用。全书分为14章,内容包括:模式识别概述,特征的选择与优化,模式相似性测度,基于概率统计的贝叶斯分类器设计,判别函数分类器设计,神经网络分类器设计(BP神经网络、径向基函数神经网络、自组织竞争神经网络、概率神经网络、对向传播神经网络、反馈型神经网络),决策树分类器设计,粗糙集分类器设计,聚类分析,模糊聚类分析,忌搜索算法聚类分析,遗传算法聚类分析,蚁群算法聚类分析,粒子群算法聚类分析。 本书内容新颖,实用性强,理论与实际应用密切结合,以手写数字识别为应用实例,介绍理论运用于实践的实现步骤及相应的Matlab代码,为广大研究工作者和工程技术人员对相关理论的应用提供借鉴。

目录

目录

第1章模式识别概述

11模式识别的基本概念

12统计模式识别

121统计模式识别研究的主要问题

122统计模式识别方法简介

13分类分析

131分类器设计

132分类器的选择

133训练与学习

14聚类分析

141聚类的设计

142基于试探法的聚类设计

143基于群体智能优化算法的聚类设计

15模式识别的应用

本章小结

习题1

第2章特征的选择与优化

21特征空间优化设计问题

22样本特征库初步分析

23样品筛选处理

24特征筛选处理

25特征评估

26基于主成分分析的特征提取

27特征空间描述与分析

271特征空间描述

272特征空间分布分析

28手写数字特征提取与分析

281手写数字特征提取

282手写数字特征空间分布分析

本章小结

习题2

第3章模式相似性测度

31模式相似性测度的基本概念

32距离测度分类法

321模板匹配法

322基于PCA的模板匹配法

323马氏距离分类

本章小结

习题3

第4章基于概率统计的贝叶斯分类器设计

41贝叶斯决策的基本概念

411贝叶斯决策所讨论的问题

412贝叶斯公式

42基于*小错误率的贝叶斯决策

43基于*小风险的贝叶斯决策

44贝叶斯决策比较

45基于*小错误率的贝叶斯分类实现

46基于*小风险的贝叶斯分类实现

本章小结

习题4

第5章判别函数分类器设计

51判别函数的基本概念

52线性判别函数

53线性判别函数的实现

54感知器算法

55Fisher分类

56基于核的Fisher分类

57支持向量机

本章小结

习题5

第6章神经网络分类器设计

61人工神经网络的基本原理

611人工神经元

612人工神经网络模型

613神经网络的学习过程

614人工神经网络在模式识别问题上的优势

62BP神经网络

621BP神经网络的基本概念

622BP神经网络分类器设计

63径向基函数神经网络(RBF)

631径向基函数神经网络的基本概念

632径向基函数神经网络分类器设计

64自组织竞争神经网络

641自组织竞争神经网络的基本概念

642自组织竞争神经网络分类器设计

65概率神经网络(PNN)

651概率神经网络的基本概念

652概率神经网络分类器设计

66对向传播神经网络(CPN)

661对向传播神经网络的基本概念

662对向传播神经网络分类器设计

67反馈型神经网络(Hopfield)

671Hopfield网络的基本概念

672Hopfield神经网络分类器设计

本章小结

习题6

第7章决策树分类器设计

71决策树的基本概念

72决策树分类器设计

本章小结

习题7

第8章粗糙集分类器设计

81粗糙集理论的基本概念

82粗糙集在模式识别中的应用

83粗糙集分类器设计

本章小结

习题8

第9章聚类分析

91聚类的设计

92基于试探的未知类别聚类算法

921*临近规则的试探法

922*大*小距离算法

93层次聚类算法

931*短距离法

932重心法

94动态聚类算法

941K均值算法

942迭代自组织的数据分析算法(ISODATA)

95模拟退火聚类算法

951模拟退火的基本概念

952基于模拟退火思想的改进K均值聚类算法

本章小结

习题9

第10章模糊聚类分析

101模糊集的基本概念

102模糊集运算

1021模糊子集运算

1022模糊集运算性质

103模糊关系

104模糊集在模式识别中的应用

105基于模糊的聚类分析

本章小结

习题10

第11章遗传算法聚类分析

111遗传算法的基本原理

112遗传算法的构成要素

1121染色体的编码

1122适应度函数

1123遗传算子

113控制参数的选择

114基于遗传算法的聚类分析

本章小结

习题11

第12章粒子群算法聚类分析

121粒子群算法的基本原理

122基于粒子群算法的聚类分析

本章小结

习题12

第13章Memetic算法仿生计算

131Memetic算法

132Memetic算法仿生计算在聚类分析中的应用

本章小结

习题13

参考文献


展开全部

作者简介

杨淑莹 博士学位,天津理工大学计算机科学与工程学院教授,硕士研究生导师,天津市“教学名师”,中国图像图形学学会第五届理事会学术委员会委员。 多年来在图像、语音、时间序列等方面进行模式识别相关工作的深入研究,涉及模式识别,数字图像处理、信号与信息处理、智能计算等领域。承担并完成*家级、市级自然科学基金项目多项,获得天津市科学技术进步奖2项,发表论文50多篇;撰写专著6部。现任*家级精品课、*家级精品资源共享课负责人;主编教材获得*家级“十一五”规划教材和*家级“十二五”规划教材;获得市级教学成果奖3项。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航