基于R应用的统计学丛书贝叶斯数据分析:基于R与Python的实现/基于R应用的统计学丛书
- ISBN:9787300283258
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 开本:其他
- 页数:304
- 出版时间:2020-07-01
- 条形码:9787300283258 ; 978-7-300-28325-8
内容简介
贝叶斯统计是和基于频率的传统统计 (频率派统计) 不同的一套关于统计推断或决策
的理论、方法与实践. 本书除了介绍贝叶斯统计的基本概念之外, 还介绍了不同贝叶斯模型的数学背景、与贝叶斯模型对应的各种计算方法, 并基于数据例子来介绍如何通过各种软件实现数据分析.本书使用的软件是以 R 为平台的 Stan 和以 Python 为平台的 PyMC3, 它们都是人们喜爱的近期新的基于 MCMC 和C++ 编译器的贝叶斯编程软件. 相信读者能够通过实践掌握它们。
本书希望使对贝叶斯统计感兴趣的广大群体获得强有力的计算能力, 以发挥他们无穷的想象力和创造力.
目录
第1章 引言
1.1 为什么用贝叶斯
1.1.1 传统数理统计的先天缺陷
1.1.2 贝叶斯方法是基于贝叶斯定理发展起来的用于系统地阐述和解决统计问题的方法
1.2 本书所强调的贝叶斯编程计算的意义
1.3 本书的构成和内容安排
1.4 习题
第2章 基本概念
2.1 概率的规则及贝叶斯定理
2.1.1 概率的规则
2.1.2 概率规则的合理性、贝叶斯定理、优势比、后验分布
2.1.3 贝叶斯和经典统计基本概念的一些比较
2.2 决策的基本概念
2.3 贝叶斯统计的基本概念
2.3.1 贝叶斯定理
2.3.2 似然函数
2.3.3 后验分布包含的信息
2.3.4 几个简单例子
2.3.5 先验分布的形式
2.4 共轭先验分布族
2.4.1 常用分布及其参数的共轭先验分布*
2.4.2 指数先验分布族的一些理论结果*
2.5 习题
第3章 基本软件: R和Python
3.1 R 简介――为领悟而运行
3.1.1 简介
3.1.2 安装和运行小贴士
3.1.3 动手
3.1.4 实践
3.2 Python 简介――为领悟而运行
3.2.1 引言
3.2.2 安装
3.2.3 基本模块的编程
3.2.4 Numpy 模块
3.2.5 Pandas 模块
3.2.6 Matplotlib 模块
3.3 习题
第二部分 几个常用初等贝叶斯模型71
第4章 比例的推断: Bernoulli 试验
4.1 采用简单共轭先验分布
4.1.1 例4.1 的关于θ的后验分布及其*高密度区域
4.1.2 例4.1 的关于θ 的*高密度区域的R 代码计算
4.1.3 例4.1 的关于θ 的*高密度区域的Python 代码计算
4.2 稍微复杂的共轭先验分布
4.2.1 模型(4.2.1) ~ (4.2.3) 拟合例
4.2 数据直接按公式计算的R 代码
4.2.2 模型(4.2.1) ~ (4.2.3) 拟合例
4.2 数据直接按公式计算的Python 代码
4.3 习题
第5章 发生率的推断: Poisson 模型
5.1 Poisson 模型和例子
5.2 对例5.1 的分析和计算
5.2.1 通过R代码利用公式分析例5.1
5.2.2 例5.1 *高密度区域的Python代码
5.3 习题
第6章 正态总体的情况
6.1 正态分布模型
6.2 均值未知而精度已知的情况
6.2.1 利用公式(6.2.1)、(6.2.2) 拟合例6.1 的数据(R)
6.2.2 利用公式(6.2.1)、(6.2.2) 拟合例6.1 数据的后验*高密度区域(Python)
6.3 两个参数皆为未知的情况
6.3.1 使用公式(6.3.1)、(6.3.2) 对例6.1 的分析(R)
6.3.2 使用公式(6.3.1)、(6.3.2) 对例6.1 的分析(Python)
6.4 习题
第三部分 算法、概率编程及贝叶斯专门软件
第7章 贝叶斯推断中的一些算法
7.1 *大后验概率法
7.2 拉普拉斯近似
7.3 马尔可夫链蒙特卡罗方法
7.3.1 蒙特卡罗积分
7.3.2 马尔可夫链
7.3.3 MCMC 方法综述
7.3.4 Metropolis 算法
7.3.5 Metropolis-Hastings 算法
7.3.6 Gibbs 抽样
7.3.7 Hamiltonian 蒙特卡罗方法
7.4 EM 算法
7.5 变分贝叶斯近似
第8章 概率编程/贝叶斯编程
8.1 引言
8.2 概率编程概述
8.2.1 概率编程要点
8.2.2 先验分布的选择――从概率编程的角度
8.3 贝叶斯计算专用软件
8.4 R/Stan
8.4.1 概述
8.4.2 安装
8.4.3 对例8.1 的数据运行R/Stan
8.5 Python/PyMC3
8.5.1 概述
8.5.2 安装
8.5.3 对例8.1 的数据运行Python/PyMC3
8.6 通过一个著名例子进一步熟悉R/Stan 和Python/PyMC3
8.6.1 R/Stan 关于例8.2 的模型(8.6.1) ~ (8.6.4) 的代码
8.6.2 Python/PyMC3 关于例8.2的模型(8.6.1) ~ (8.6.4) 的代码
8.7 R 中基于Stan 的两个程序包
8.7.1 R 中基于Stan 的rstanarm 程序包
8.7.2 R 中基于Stan 的brms 程序包
8.8 Python 中的BayesPy 模块简介
8.9 习题
第9章 在常用模型中使用R/Stan和Python/PyMC3 的例子
9.1 热身: 一些简单例子
9.1.1 抛硬币: 二项分布
9.1.2 正态分布例子
9.1.3 简单回归例子
9.1.4 简单logistic 回归例子
9.2 第4章例子的贝叶斯编程计算Bernoulli/二项分布模型参数的后验分布
9.2.1 通过R/Stan 用模型(9.2.1) ~(9.2.3) 拟合例4.2 的数据
9.2.2 通过Python/PyMC3 用模型(9.2.1) ~ (9.2.3) 拟合例4.2 的数据
9.3 第5章例子的贝叶斯编程计算Poisson 模型参数的后验分布
9.3.1 使用R/Stan 的代码用模型(5.1.1)、(5.1.2) 拟合例5.1 的数据
9.3.2 使用Python/PyMC3 的代码用模型(5.1.1)、(5.1.2) 拟合例5.1的数据
9.4 第6章例子的贝叶斯编程计算后验分布的正态分布例子
9.4.1 通过R/Stan 代码用模型(9.4.1) ~ (9.4.3) 拟合例6.1 的数据
9.4.2 通过Python/PyMC3 代码用模型(9.4.1) ~ (9.4.3) 拟合例6.1 的数据
9.5 习题
第四部分 更多的贝叶斯模型185
第10章 贝叶斯广义线性模型
10.1 可能性和*大似然原理
10.2 指数分布族和广义线性模型
10.2.1 指数分布族的典则形式
10.2.2 广义线性模型和连接函数
10.3 线性回归
10.3.1 应用R/Stan 代码于例10.3的模型(10.3.1) ~ (10.3.6)
10.3.2 应用Python/PyMC3 代码于例10.3 的模型(10.3.1) ~ (10.3.6)
10.4 二水平变量问题: logistic 回归
10.4.1 应用R/Stan 代码于例10.4的模型(10.4.2) ~ (10.4.4)
10.4.2 应用Python/PyMC3 代码于例10.4 的模型(10.4.2) ~ (10.4.4)
10.5 分层线性回归: 多水平模型
10.5.1 应用R/Stan 代码于例10.5的模型(10.5.3) ~ (10.5.6)
10.5.2 应用Python/PyMC3 代码于例10.5 的模型(10.5.3) ~ (10.5.6)
10.6 分层logistic 回归
10.6.1 应用R/Stan 代码于例10.6的模型(10.6.2) ~ (10.6.5)
10.6.2 应用Python/PyMC3 代码于例10.6 的模型(10.6.2) ~ (10.6.5)
10.7 习题
第11章 生存分析
11.1 生存分析的基本概念
11.1.1 本章的例子
11.1.2 Cox PH 模型
11.1.3 参数PH 模型
11.1.4 加速失效时间模型
11.2 数值计算例子
11.2.1 Cox PH 模型*
11.2.2 AFT 模型: Weibull 分布
11.2.3 AFT 模型: log-logistic 分布
11.2.4 Weibull 模型
11.3 习题
第12章 朴素贝叶斯
12.1 基本概念
12.1.1 类条件独立性假定
12.1.2 朴素贝叶斯分类器类型
12.2 朴素贝叶斯方法分类数值例子
12.3 本章的Python 代码
12.4 习题
第13章 贝叶斯网络
13.1 概述
13.1.1 基本概念
13.1.2 贝叶斯网络的难点及优缺点
13.1.3 贝叶斯网络的一个简单例子
13.2 学习贝叶斯网络
13.2.1 贝叶斯网络中的条件独立性概念
13.2.2 网络学习算法的种类
13.2.3 几种可能面对的问题
13.3 贝叶斯网络的数值例子及计算
13.3.1 全部变量是离散变量的情况
13.3.2 全部变量是连续变量的情况
13.3.3 连续变量和离散变量混合的情况
第14章 隐马尔可夫模型*
14.1 概述
14.2 HMM 的三个主要问题
14.2.1 评估问题
14.2.2 解码问题
14.2.3 学习问题
14.3 HMM 的数值例子和计算
14.3.1 数值例子
14.3.2 使用HMM 方法于例14.1(R)
14.3.3 使用HMM 方法于例14.1(Python)
参考文献
节选
贝叶斯统计是和基于频率的传统统计(频率派统计) 不同的??套关于统计推断或决策的理论、??法与实践. 传统统计由于其概率是??频率定义的, 因此有其天??的弱点和缺陷,许多推断问题??法得到明确的结论. 贝叶斯统计的思维??式与传统统计不同, 成为与传统统计平??的决策体系. 在不同的数据分析问题中, 这两种决策体系各有优劣. 但关于这两种体系在哲学意义上优劣的争论则从来也没有停??过. 当然, 实际??作者们则不会在意这些争论, ??是选择*能够达到他们??标的??法, ??论是贝叶斯??法还是传统统计??法. 贝叶斯思维在统计建模和数据分析????具有许多优点. 它提供了??种根据*近的知识更新信仰的机器学习过程. 例如, 它提供??经典统计更具有概率意义的推断, 它还可以使??现代抽样??法评估嵌套模型和??嵌套模型(区别传统??法) 的概率, 它也很容易拟合使??经典??法很难应付的复杂随机效应模型. 在前计算机时代, 贝叶斯统计的发展曾经被计算资源的有限性拖累, 现在这个问题已经不存在了. ??前贝叶斯建模急剧增长的两个主要原因是: (1) 计算贝叶斯后验分析所需的各种积分算法的持续发展; (2) 现代计算速度的不断加快. 现在??们完全可以使??贝叶斯模型来拟合传统统计??法??法应付的??常复杂的模型. 和传统频率派数理统计类似, 纯粹贝叶斯派的统计属于模型驱动的范畴, 这两种统计与数据驱动或问题驱动的现代数据科学理念有不??的差距. 然??, 贝叶斯统计的某些思维模式对于数据科学的机器学习??法有很??的启发. 除了数据科学常??的朴素贝叶斯分类和贝叶斯??络之外, 在神经??络和深度学习等完全是数据驱动的实践中, 到处都可以看到贝叶斯的影??. 当然, 这些可能不被纯粹的贝叶斯派公开认可, 但的确是受到贝叶斯统计思维的影响. 长期以来, 在英??中, 纯粹贝叶斯派??法??\Bayesian' 作为形容词, ??那些有些“离经叛道' 的??法只能??\Bayes' 作为形容词. 现在这两者的区别已经不那么绝对. 任何数学体系??对????的应??环境, 不可能也没有必要为保持其``纯洁性' ????步不前. 除了介绍贝叶斯统计的基本概念之外, 本书还介绍了不同贝叶斯模型的数学背景、与贝叶斯模型对应的各种计算??法, 并基于数据例??来介绍如何通过各种软件实现数据分析.本书希望使对贝叶斯统计感兴趣的广大群体获得强有力的计算能力, 以发挥他们无穷的想象力和创造力. 除了R 和Python 之外, 本书基本上平??地使??两个贝叶斯编程的专??软件: 以R 为平台的Stan 和以Python 为平台的PyMC3, 它们都是??们喜爱的*新的基于MCMC 和C++ 编译器的贝叶斯编程软件. 之所以平??使??不同软件, 是因为它们各有优缺点, 适??于有不同编程习惯的??. 当然, 不同软件的使??环境不同, 两个软件的应??不可能也没有必要做到百分之百重合, 相信读者能够通过实践掌握它们(??少其中之??). 本书的读者对象既包括希望了解贝叶斯统计数学概念的读者, 也包括那些希望利??贝叶斯模型来做实际数据分析的读者. 本书的计算是由编程软件实现的, 我们希望有更多的??通过这本书学会利??编程软件与数据建模.
作者简介
吴喜之,北京大学数学力学系本科,美国北卡罗来纳大学统计博士。中国人民大学统计学院教授,博士生导师。曾在美国加利福尼亚大学、北卡罗来纳大学以及南开大学、北京大学等多所著名学府执教。
-
断代(八品)
¥15.5¥42.0 -
家居设计解剖书
¥29.3¥39.0 -
当代中国政府与政治(新编21世纪公共管理系列教材)
¥30.2¥48.0 -
中医基础理论
¥50.7¥59.0 -
习近平新时代中国特色社会主义思想概论
¥18.2¥26.0 -
EPLAN电气设计
¥29.9¥39.8 -
社会学概论(第二版)
¥33.0¥55.0 -
当代教育心理学(第3版)(本科教材)
¥23.8¥66.0 -
编辑审稿实务教程
¥35.1¥45.0 -
落洼物语
¥8.4¥28.0 -
软件定义网络(SDN)实战教程
¥49.6¥69.8 -
[社版]大汉战神:霍去病传
¥14.0¥40.0 -
介入护理学(案例版)
¥52.4¥69.8 -
毛泽东思想和中国特色社会主义理论体系概论
¥17.5¥25.0 -
学前教育史(第二版)
¥31.2¥48.0 -
数理经济学的基本方法(第4版)(精)
¥56.9¥79.0 -
老子道德经注校释(精)/新编诸子集成
¥30.1¥43.0 -
陶瓷工艺技术
¥41.7¥49.0 -
陶瓷工艺学/焦宝祥
¥41.7¥49.0 -
古代汉语(第四册)
¥13.3¥35.0