×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
暂无评论
图文详情
  • ISBN:9787312022975
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:16开
  • 页数:308
  • 出版时间:2020-10-01
  • 条形码:9787312022975 ; 978-7-312-02297-5

内容简介

以测度论为背景介绍了集合代数构造、概率扩张、随机变量的期望、收敛性、Lebesgue分解、条件期望和鞅列、分布函数和特征函数、极限理论等概率论中的基本知识。其特点是抽象与直观相结合,经典方法与现代方法相结合。全书论证严谨,内容丰富,每章后均附有一定量的习题以加深理解和拓广本章的知识点。读者对象是学过实变函数和初等概率论的统计系和数学系的高年级本科生、研究生以及其他如金融工程、管理科学等方面的教师和研究工作者。

目录

总序
第2版前言
第1版前言
一些常用符号
第1章 概率空间
1.1 事件与概率
1.1.1 事件和事件的运算
1.1.2 试验
1.2 集合代数
1.3 概率和概率空间
1.4 概率的扩张
1.5 概率和分布函数的一一对应
1.6 独立性
1.7 习题
第2章 随机变量的积分
2.1 可测映射
2.2 随机变量
2.3 随机变量的分布和独立性
2.3.1 分布与分布函数
2.3.2 随机变量的独立性
2.4 随机变量的数学期望
2.5 概率变换与积分
2.6 Radon-Nikodym定理
2.6.1 不定积分和Lebesgue分解
2.6.2 分布函数的Lebesgue分解
2.7 收敛性
2.7.1 本质上下确界
2.7.2 几乎处处收敛和依概率收敛
2.7.3 一致可积和平均收敛
2.7.4 矩与矩不等式
2.7.5 Lp空间和Lp收敛定理
2.8 习题
第3章 乘积空间和随机函数
3.1 二维乘积空间和Fubini定理
3.1.1 乘积可测空间
3.1.2 转移概率和乘积概率
3.2 无穷维乘积可测空间和随机函数
3.3 习题
第4章 条件期望和鞍序列
4.1 条件期望的定义
4.2 条件期望的性质
4.3 条件独立性
4.4 条件概率
4.5 鞍列和停时
4.6 习题
第5章 分布函数和特征函数
5.1 分布函数
5.1.1 随机变量对应的分布函数收敛性
5.1.2 分布函数的收敛性
5.2 特征函数与分布函数
5.2.1 逆转公式
5.2.2 几种收敛性之间的关系
5.3 随机变量特征函数的初等性质
5.3.1 特征函数的一般性质
5.3.2 与特征函数有关的不等式性质
5.4 特征函数的微分性质及其与对应分布矩的关系
5.5 特征函数的判别准则
5.6 多维特征函数
5.7 习题
第6章 极限定理
6.1 预备知识
6.2 弱大数定律
6.3 中心极限定理
6.4 正态逼近速度
6.4.1 用特征函数来估计正态逼近的速度
6.4.2 用Stein方法来估计正态逼近的收敛速度
6.5 强大数定律
6.6 重对数律
6.7 习题
参考文献
展开全部

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航