×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
乳腺X线图像分析:乳腺癌风险评估与计算机辅助诊断(英文版)/陈智丽,姚凡,张辉

乳腺X线图像分析:乳腺癌风险评估与计算机辅助诊断(英文版)/陈智丽,姚凡,张辉

1星价 ¥81.3 (8.3折)
2星价¥81.3 定价¥98.0
暂无评论
图文详情
  • ISBN:9787030665096
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:其他
  • 页数:176
  • 出版时间:2020-11-01
  • 条形码:9787030665096 ; 978-7-03-066509-6

内容简介

本书主要探讨计算机视觉和图像处理技术在乳腺X线图像分析领域中的应用,主要集中于乳腺癌风险评估和计算机辅助诊断方面。旨在为乳腺X线图像领域的科研人员,建立一套完整的自动化乳腺癌风险评估框架,深入分析理解乳腺X线图像反映出的组织密度、纹理和结构分布信息,并将其有效地应用于基于组织密度分布的乳腺癌风险评估体系,实现快速、客观、准确的自动化乳腺癌风险评估。作者结合多年来从事该领域研究的经验和取得的成果,细致介绍和讲解多种乳腺X线图像分析方法,包括:乳腺区域分割,乳腺组织分割,高密度乳腺组织检测,乳腺组织密度定量分析,乳腺组织密度和实质模式的数学模型建立,乳腺组织的局部纹理描述,团状乳腺组织检测,以及乳腺密度等级自动分类等。本书涉及的所有研究验证工作均依据乳腺X线图像靠前标准数据库开展,并结合本土病例探讨所述方法的实际临床应用价值,研究成果对同领域相关研究具有很好的借鉴价值。

目录

Contents
Chapter 1 Introduction 1
1.1 Breast Cancer Status 1
1.2 Mammography 2
1.3 Mammographic Risk Assessment 4
1.3.1 Wolfe’s Four Risk Categories 4
1.3.2 Boyd’s Six Class Categories 5
1.3.3 Four BIRADS Density Categories 5
1.3.4 Tabár’s Five Patterns 5
1.4 CAD in Mammography 7
1.5 Clinical Utility of the Present Research 8
1.6 Focus and Contributions of the Book 8
1.7 Book Outline 10
Chapter 2 A Literature Review of Mammographic Image Analysis 12
2.1 Mammographic Image Segmentation 12
2.1.1 Breast Region Segmentation 12
2.1.2 Breast Density Segmentation 19
2.2 Estimation of Mammographic Density 23
2.3 Characterisation of Mammographic Parenchymal Patterns 28
2.4 Breast Density Classification 33
2.5 Summary 37
Chapter 3 Image Segmentation in Mammography 38
3.1 Breast Region Segmentation in Mammograms 38
3.1.1 Methodology 38
3.1.2 Results and Discussion 42
3.2 A Modified FCM Algorithm for Breast Density Segmentation 49
3.2.1 FCM Algorithms 49
3.2.2 A Modified FCM Algorithm 51
3.2.3 Experimental Results 53
3.3 Topographic Representation Based Breast Density Segmentation 57
3.3.1 Topographic Representation 57
3.3.2 Segmentation of Dense Tissue Regions 59
3.3.3 Breast Density Quantification 61
3.3.4 Results 62
3.4 Summary 64
Chapter 4 Texture Analysis in Mammography 66
4.1 Local Feature Based Texture Representations 66
4.1.1 Local Binary Patterns 67
4.1.2 Local Grey-Level Appearances 67
4.1.3 Basic Image Features 68
4.1.4 Textons 69
4.2 Mammographic Tissue Appearance Modelling 70
4.3 Summary 74
Chapter 5 Multiscale Blob Detection in Mammography 75
5.1 Blob Detection 75
5.1.1 Laplacian of Gaussian 75
5.1.2 Difference of Gaussian 76
5.1.3 Determinant of the Hessian Matrix 76
5.1.4 Hessian-Laplacian 77
5.1.5 Fast-Hessian 77
5.1.6 Salient Region 77
5.2 A Blob Based Representation of Mammographic Parenchymal Patterns 78
5.2.1 Detection of Multiscale Blobs 79
5.2.2 Blob Merging 85
5.2.3 Blob Encoding 88
5.3 Results and Discussion 88
5.4 Summary 93
Chapter 6 Breast Cancer Risk Assessment 95
6.1 Experimental Data 95
6.1.1 MIAS Database 95
6.1.2 DDSM Database 96
6.2 Evaluation Methodology 97
6.2.1 Classification Algorithm 97
6.2.2 Cross-Validation Scheme 98
6.2.3 Result Representation 100
6.3 Evaluating the Proposed Methods 100
6.3.1 Evaluation of Breast Density Segmentation 100
6.3.2 Evaluation of Breast Tissue Appearance Modelling 108
6.3.3 A Combined Modelling of Breast Tissue 112
6.3.4 Evaluation of Blob-Based Representation 115
6.4 Summary 118
Chapter 7 Discussions on Breast Cancer Risk Assessment in Mammography 120
7.1 Comparison of the Proposed Methods 120
7.2 Comparing with Related Publications 126
7.3 Summary 130
Chapter 8 Computer-Aided Diagnosis of Breast Cancer Based on Deep Learning 131
8.1 Literature Review on Deep Learning Based Mammographic Image Analysis 131
8.2 Mass Detection and Classification in Mammograms withaDeepPipeline 135
8.2.1 Dataset Information 136
8.2.2 Model Architecture 139
8.2.3 Training 140
8.2.4 Results & Discussion 140
8.3 Summary 149
Chapter 9 Conclusions 150
9.1 Summary of the Book 150
9.2 Contributions and Novel Aspects 152
9.3 Future Work 154
Bibliography 156
Biography 167
展开全部

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航