- ISBN:9787302570646
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 开本:16开
- 页数:333
- 出版时间:2021-03-01
- 条形码:9787302570646 ; 978-7-302-57064-6
本书特色
初学者学习机器学习课程一般都会面临两大障碍。**大障碍是数学基础。机器学习要求有数学基础,书中大量的公式是初学者的噩梦,尤其是对于已经离开大学走向工作岗位的爱好者来说,从头开始去学习和理解数据分布和模型背后的数学原理需要花费很多的时间和精力,学习周期非常漫长。第二大障碍是编程实践。并不是所有人都擅长编代码,而只有亲手用代码实现机器学习的各种算法,亲眼见到算法解决了实际问题,才能更深入理解算法。除非想做高精尖的前沿研究,理论研究和公式推导并非大多数人的专长,如果只是想更合理地应用机器学习来解决实际问题,掌握必需的数学知识就可以理解问题该如何解决,使用Python编程实现机器学习算法也比使用C++或Java等语言容易得多。 本书就是为了让初学者顺利入门而设计的。首先,本书只讲述机器学习常用算法的基本原理,并不追求各种算法大而全地简略罗列,学习并深入理解这些精挑细选的算法后,能够了解基本的机器学习算法,使用适合的算法来解决实际问题。其次,本书使用Python 3.7+Numpy来实现常用的机器学习算法,读者能亲眼看见算法的工作过程和结果,可加深对抽象公式和算法的理解,逐步掌握机器学习的基本原理和编程技能,拉近理论与实践的距离。再次,每章都附有习题和习题参考答案,其中,一部分习题是为了帮助读者理解正文内容而设置的,另一部分习题是为了降低正文中的数学要求,将一些必要但枯燥的公式推导放在习题中,供读者有选择性地学习。 机器学习原理与Python编程实践,专为初学者顺利入门设计,解决机器学习中数学基础和编程实践的两大障碍
内容简介
本书讲述机器学习的基本原理,使用Pymon和Numpy实现涉及的各种机器学习算法。通过理论学习和实践操作,使读者了解并掌握机器学习的基本原理和技能,拉近理论与实践的距离。全书共分为13章,主要内容包括:机器学习介绍、线性回归、逻辑回归、贝叶斯分类器、模型评估与选择、K-均值算法和EM算法、决策树、神经网络、隐马尔科夫模型、支持向量机、推荐系统、主成分分析、集成学习。全书源码全部在Pvthon 3.7上调试成功,每章都附有习题和习题参考答案,供读者参考。 本书系统讲解了机器学习的常用核心算法和Python编程实践,内容全面、实例丰富、可操作性强,做到理论与实践相结合。本书适合机器学习爱好者作为入门和提高的技术参考书,也适合用作计算机专业高年级本科生和研究生的教材或教学参考书。
目录
作者简介
袁梅宇,北航工学博士,硕士导师,现在昆明理工大学计算机系任教。为本科生和研究生主讲Java程序设计、Java EE技术、数据库原理、人工智能、Dot Net技术等核心课程,参加过863 CIMS Net建设、中欧合作项目DRAGON和多项国家基金和省基金项目,**作者公开发表论文十余篇,软件著作权(颁证)六项。**作者专著有《Java EE企业级编程开发实例详解》、《数据挖掘与机器学习——WEKA应用技术与实践》(**版、第二版)、《求精要诀——Java EE编程开发案例精讲》、《机器学习基础原理、算法与实践》。
-
深度学习的数学
¥43.5¥69.0 -
全图解零基础word excel ppt 应用教程
¥12.0¥48.0 -
机器学习
¥59.4¥108.0 -
有限与无限的游戏:一个哲学家眼中的竞技世界
¥37.4¥68.0 -
智能硬件项目教程:基于ARDUINO(第2版)
¥31.9¥65.0 -
硅谷之火-人与计算机的未来
¥14.3¥39.8 -
元启发式算法与背包问题研究
¥38.2¥49.0 -
AI虚拟数字人:商业模式+形象创建+视频直播+案例应用
¥62.9¥89.8 -
UNIX环境高级编程(第3版)
¥164.9¥229.0 -
剪映AI
¥52.8¥88.0 -
深度学习高手笔记 卷2:经典应用
¥90.9¥129.8 -
纹样之美:中国传统经典纹样速查手册
¥76.3¥109.0 -
UG NX 12.0数控编程
¥22.1¥45.0 -
MATLAB计算机视觉与深度学习实战(第2版)
¥90.9¥128.0 -
界面交互设计理论研究
¥30.8¥56.0 -
微机组装与系统维护技术教程(第二版)
¥37.8¥43.0 -
明解C语言:实践篇
¥62.9¥89.8 -
Linux服务器架设实战(Linux典藏大系)
¥83.3¥119.0 -
Visual Basic 语言程序设计基础(第6版)
¥32.0¥45.0 -
贝叶斯推理与机器学习
¥139.3¥199.0