×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
AI芯片:前沿技术与创新未来

AI芯片:前沿技术与创新未来

1星价 ¥100.7 (6.3折)
2星价¥100.7 定价¥159.8
暂无评论
图文详情
  • ISBN:9787115553195
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:26cm
  • 页数:388页
  • 出版时间:2021-04-01
  • 条形码:9787115553195 ; 978-7-115-55319-5

本书特色

适读人群 :本书可供AI和芯片领域的研究人员、工程技术人员,科技、产业决策和管理人员,创投从业者和相关专业研究生、本科生以及所有对AI芯片感兴趣的人士阅读参考。市面上jue无仅有的AI芯片全书; AI芯片主流大厂首席科学家多年研究经验和前瞻的倾心总结; 覆盖AI芯片相关的技术路线、理论基础和产业实践等诸多方面; 揭示AI芯片全球舞台上,芯片巨头、互联网巨头、初创企业和学术界等各方面态势; 从深度学习AI芯片等现有产品,到自学习/进化等下一代技术,再到量子场论、超材料甚至生物技术AI芯片等远期前瞻题材,本书将带你走进AI芯片的未来。

内容简介

本书从AI的发展历史出发, 介绍了目前*热门的深度学习加速芯片和基于神经形态计算的类脑芯片及相关算法、架构、电路等, 以及近年来产业界和学术界推出的一些引人注目的AI芯片, 包括生成对抗网络芯片和深度强化学习芯片等。

目录

**篇 导论

第1 章 AI 芯片是人工智能未来发展的核心——什么是 AI 芯片 // 2

1.1 AI 芯片的历史 // 3

1.2 AI 芯片要完成的基本运算 // 5

1.2.1 大脑的工作机制 // 5

1.2.2 模拟大脑运作的神经网络的计算 // 7

1.2.3 深度学习如何进行预测 // 8

1.2.4 提高性能和降低功耗 // 9

1.3 AI 芯片的种类 // 11

1.3.1 深度学习加速器 // 15

1.3.2 类脑芯片 // 16

1.3.3 仿生芯片及其他智能芯片 // 17

1.3.4 基于忆阻器的芯片 // 19

1.4 AI 芯片的研发概况 // 22 1.5 小结 // 23


第2 章 执行“训练”和“推理”的 AI 芯片 // 25

2.1 深度学习算法成为目前的主流 // 25

2.1.1 深度学习的优势与不足 // 28

2.1.2 监督学习与无监督学习 // 29

2.1.3 AI 芯片用于云端与边缘侧 // 31

2.1.4 把 AI 计算从云端迁移到边缘侧 // 36

2.2 AI 芯片的创新计算范式 // 40

2.3 AI 芯片的创新实现方法 // 42 2.4 小 结 // 46


第二篇 *热门的 AI 芯片


第3 章 深度学习 AI 芯片 // 48

3.1 深度神经网络的基本组成及硬件实现 // 48

3.1.1 AI 芯片的设计流程 // 50

3.1.2 计算引擎和存储系统 // 51

3.2 算法的设计和优化 // 57

3.2.1 降低数值精度的量化技术 // 57

3.2.2 压缩网络规模、“修剪”网络 // 62

3.2.3 二值和三值神经网络 // 63

3.2.4 可变精度和迁移精度 // 64

3.2.5 简化卷积层 // 66

3.2.6 增加和利用网络稀疏性 // 66

3.3 架构的设计和优化 // 67

3.3.1 把数据流用图表示的架构设计 // 68

3.3.2 架构设计及优化的其他考虑 // 71

3.4 电路的设计和优化 // 72

3.4.1 用模数混合电路设计的 MAC // 73

3.4.2 FPGA 及其 Overlay 技术 // 74

3.5 其他设计方法 // 76

3.5.1 卷积分解方法 // 76

3.5.2 提前终止方法 // 76

3.5.3 知识蒸馏方法 // 77

3.5.4 经验测量方法 // 77

3.5.5 哈希算法取代矩阵乘法 // 78

3.5.6 神经架构搜索 // 78

3.6 AI 芯片性能的衡量和评价 // 79

3.7 小 结 // 82


第4 章 近年研发的 AI 芯片及其背后的产业和创业特点 // 85

4.1 对 AI 芯片巨大市场的期待 // 86 4.2 “1+3”大公司格局 // 87

4.2.1 英伟达 // 87

4.2.2 谷歌 // 91

4.2.3 英特尔 // 94

4.2.4 微软 // 96

4.2.5 其他一些著名公司的 AI 芯片 // 97

4.2.6 三位世界级 AI 科学家 // 101

4.3 学术界和初创公司 // 102

4.3.1 大学和研究机构的 AI 芯片 // 103

4.3.2 四家初创“独角兽”公司的芯片 // 111

4.4 小 结 // 119

第5 章 神经形态计算和类脑芯片 // 121

5.1 脉冲神经网络的基本原理 // 122

5.2 类脑芯片的实现 // 125

5.2.1 忆阻器实现 // 127

5.2.2 自旋电子器件实现 // 129

5.3 基于 DNN 和 SNN 的 AI 芯片比较及未来可能的融合 // 131

5.4 类脑芯片的例子及*新发展 // 133

5.5 小 结 // 138



第三篇 用于 AI 芯片的创新计算范式


第6 章 模拟计算 // 142

6.1 模拟计算芯片 // 143

6.2 新型非易失性存储器推动了模拟计算 // 147

6.2.1 用阻变存储器实现模拟计算 // 147

6.2.2 用相变存储器实现模拟计算 // 149

6.2.3 权重更新的挑战 // 150

6.2.4 NVM 器件的材料研究和创新 // 151

6.3 模拟计算的应用范围及其他实现方法 // 153

6.4 模拟计算的未来趋势 // 154

6.5 小 结 // 156


第7 章 存内计算 // 158

7.1 冯·诺依曼架构与存内计算架构 // 158

7.2 基于存内计算的 AI 芯片 // 161

7.2.1 改进现有存储芯片来完成存内计算 // 161

7.2.2 用 3D 堆叠存储技术来完成存内计算 // 164

7.2.3 用新型非易失性存储器来完成存内计算 // 165

7.3 小 结 // 171



第8 章 近似计算、随机计算和可逆计算 // 174

8.1 近似计算 // 174

8.1.1 减少循环迭代次数的近似计算 // 176


8.1.2 近似加法器和近似乘法器 // 177

8.1.3 降低电源电压的近似计算 // 178

8.1.4 基于 RRAM 的近似计算 // 180

8.1.5 应对电路故障的近似计算 // 182

8.2 随机计算 // 182

8.3 可逆计算 // 187

8.4 小 结 // 191



第9 章 自然计算和仿生计算 // 192

9.1 组合优化问题 // 193

9.2 组合优化问题的*优化算法 // 195

9.2.1 模拟退火 // 195

9.2.2 自组织映射 // 197

9.2.3 群体算法 // 199

9.3 超参数及神经架构搜索 // 201

9.3.1 粒子群优化的应用 // 202

9.3.2 强化学习方法的应用 // 202

9.3.3 进化算法的应用 // 203

9.3.4 其他自然仿生算法的应用 // 204

9.4 基于自然仿生算法的 AI 芯片 // 205

9.4.1 粒子群优化的芯片实现 // 206

9.4.2 用忆阻器实现模拟退火算法 // 207

9.5 小 结 // 208



第四篇 下一代 AI 芯片

第10 章 受量子原理启发的 AI 芯片——解决组合优化问题的突破 // 210

10.1 量子退火机 // 210

10.2 伊辛模型的基本原理 // 212

10.3 用于解决组合优化问题的 AI 芯片 // 214

10.3.1 基于 FPGA 的可编程数字退火芯片 // 214

10.3.2 使用 OPO 激光网络来进行*优化计算 // 216

10.3.3 CMOS 退火芯片 // 218


10.3.4 商用量子启发 AI 芯片 // 220

10.4 量子启发 AI 芯片的应用 // 221

10.5 小 结 // 223


第11 章 进一步提高智能程度的 AI 算法及芯片 // 224

11.1 自学习和创意计算 // 225

11.2 元学习 // 226

11.2.1 模型不可知元学习 // 226

11.2.2 元学习共享分层 // 227

11.2.3 终身学习 // 228

11.2.4 用类脑芯片实现元学习 // 229

11.3 元推理 // 230

11.4 解开神经网络内部表征的缠结 // 231

11.5 生成对抗网络 // 235


11.5.1 生成对抗网络的 FPGA 实现 // 239

11.5.2 生成对抗网络的 CMOS 实现 // 239

11.5.3 生成对抗网络的 RRAM 实现 // 240

11.6 小结 // 242


第12 章 有机计算和自进化 AI 芯片 // 243

12.1 带自主性的 AI 芯片 // 244

12.2 自主计算和有机计算 // 247

12.3 自进化硬件架构与自进化 AI 芯片 // 248

12.3.1 自进化硬件架构 // 248

12.3.2 自进化 AI 芯片 // 250

12.4 深度强化学习 AI 芯片 // 252

12.5 进化算法和深度学习算法的结合 // 253

12.6 有机计算和迁移学习的结合 // 254

12.7 小 结 // 255


第13 章 光子 AI 芯片和储备池计算 // 256

13.1 光子 AI 芯片 // 257

13.1.1 硅光芯片 // 258

13.1.2 光学神经网络架构 // 259

13.1.3 光子 AI 芯片 // 261

13.2 基于储备池计算的 AI 芯片 // 263

13.3 光子芯片的新进展 // 267

13.4 小 结 // 268



第五篇 推动 AI 芯片发展的新技术

第14 章 超低功耗与自供电 AI 芯片 // 271

14.1 超低功耗 AI 芯片 // 271

14.2 自供电 AI 芯片 // 274

14.2.1 使用太阳能的 AI 芯片 // 276

14.2.2 无线射频信号能量采集 // 277

14.2.3 摩擦生电器件 // 280

14.2.4 微尘大小的 AI 芯片 // 282

14.2.5 可采集能源的特性 // 283

14.2.6 其他可能被发掘的能源 // 284

14.3 小 结 // 285


第15 章 后摩尔定律时代的芯片 // 287

15.1 摩尔定律仍然继续,还是即将终结 // 287

15.1.1 摩尔定律进一步 // 290

15.1.2 比摩尔定律更多 // 293

15.1.3 超越 CMOS // 300

15.2 芯片设计自动化的前景 // 311

15.3 后摩尔定律时代的重要变革是量子计算芯片 // 312

15.4 小 结 // 314


第六篇 促进 AI 芯片发展的基础理论研究、应用和创新

第16 章 基础理论研究引领 AI 芯片创新 // 316

16.1 量子场论 // 317

16.1.1 规范场论与球形曲面卷积 // 317

16.1.2 重整化群与深度学习 // 321

16.2 超材料与电磁波深度神经网络 // 322

16.3 老子之道 // 327

16.4 量子机器学习与量子神经网络 // 331

16.5 统计物理与信息论 // 333

16.6 小结 // 336


第17 章 AI 芯片的应用和发展前景 // 338

17.1 AI 的未来发展 // 338

17.2 AI 芯片的功能和技术热点 // 341

17.3 AI 的三个层次和 AI 芯片的应用 // 343

17.4 更接近生物大脑的 AI 芯片 // 347

17.4.1 带“左脑”和“右脑”的 AI 芯片 // 349

17.4.2 用细菌实现的扩散忆阻器 // 350

17.4.3 用自旋电子器件实现的微波神经网络 // 351

17.4.4 用电化学原理实现模拟计算 // 352

17.5 AI 芯片设计是一门跨界技术 // 353

17.6 小 结 // 355


附录 中英文术语对照表 // 360

参考文献 // 369


展开全部

作者简介

张臣雄 毕业于上海交通大学电子工程系,在德国获得工学硕士和工学博士学位。曾在德国西门子、Interphase、上海通信技术中心及一家世界500 强大型高科技企业分别担任项目主管、CTO、CEO、首席科学家等职,长期从事及主管半导体芯片的研究和开发,推动芯片的产业化应用。 张臣雄博士是两家创业公司的创始人之一,兼任首席科学家。他拥有200 余项专利及专利申请,出版了多本专著并发表了100 多篇论文。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航