×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
代数拓扑基础教程A basic course in algebraic topology

代数拓扑基础教程A basic course in algebraic topology

1星价 ¥74.0 (8.6折)
2星价¥74.0 定价¥86.0
暂无评论
图文详情
  • ISBN:9787510004803
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:23cm
  • 页数:16,428页
  • 出版时间:2009-08-01
  • 条形码:9787510004803 ; 978-7-5100-0480-3

内容简介

本书的主要内容包括:紧2-流形的分类、基本群、覆叠空间、奇异同调论以及奇异上同调理论。这些主题得到系统地展开,并且摒弃了所有不必要的定义、术语及技术工具。作者力求突出各种概念的几何背景。本书纳入了作者以前的著作:《代数拓扑学引论》(GTM 56)中的前五章内容,以及现已绝版的《奇异同调论》(GTM 70)著作中的几乎全部内容,这些内容材料现都已经过了细致地修改、校正与翻新。目次:2维流形;基本群; 自由群及群的自由积 两空间并集的基本群上的Seifert及Van Kampen定理及其应用;覆叠空间; 同调理论的背景及动机;同调理论的定义及基本性质;一些空间的同调群的计算: 同调理论的应用及更多性质;CW复形的同调;任意系数群的同调; 积空间的同调;上同调理论;同调及上同调的积;流形上的同调对偶定理;射影空间的上积及其应用。

目录

Preface Notation and Terminology CHAPTER I Two-Dimensional Manifolds §1.Introduction §2.Definition and Examples of n-Manifolds §3.Orientable vs.Nonorientablc Manifolds §4.Examples of Compact, Connected 2-Manifolds §5.Statement of the Classification Theorem for Compact Surfaces §6.Triangulations ofCompact Surfaces §7.Proof of Theorem 5.1 §8.The Euler Characteristic of a Surface References CHAPTER II The Fundamental Group §1.Introduction §2.Basic Notation and Terminology §3.Definition of the Fundamental Group of a Space §4.The Effect of a Continuous Mapping on the Fundamental Group §5.The Fundamental Group of a Circle Is Infinite Cyclic §6.Application: The Brouwer Fixed-Point Theorem in Dimension 2 §7.The Fundamental Group of a Product Space §8.Homotopy Type and Homotopy Equivalence of Spaces References CHAPTER III Free Groups and Free Products of Groups §1.Introduction §2.The Weak Product of Abelian Groups §3.Free Abelian Groups §4.Free Products ofGroups §5.Free Groups §6.The Presentation of Groups by Generators and Relations §7.Universal Mapping Problems References CHAPTER IV Seifert and Van Kampen Theorem on the Fundamental Group of the Union of Two Spaces Applications §1.Introduction §2.Statement and Proof of the Theorem of Seifert and Van Kampen §3.First Application of Theorem 2.1 §4.Second Application of Theorem 2.1 §5.Structure of the Fundamental Group of a Compact Surface §6.Application to Knot Theory §7.Proof of Lemma 2.4 References …… CHAPTER V Covering Spaces CHAPTER VI Background and Motivation for Homology Theory CHAPTER VII Definitions and Basic Properties of Homology Theory CHAPTER VIII Determination of the Homology Groups of Certain Spaces: Applications and Further Properties of Homology Theory CHAPTER IX Homology of CW-Complexes CHAPTER X Homology with Arbitrary Coefficient Groups CHAPTER XI The Homology of Product Spaces CHAPTER XII Cohomology Theory CHAPTER XIII Products in Homology and Cohomology CHAPTER XIV Duality Theorems for the Homology of Manifolds CHAPTER XV Cup Products in Project we Spaces and Applications of Cup Products APPENDIX Index
展开全部

作者简介

William Massey, 1920年出生于美国的伊利诺伊州,1949年获得普林斯顿大学博士学位,并在该校担任两年的博士后研究助教后,在Brown大学任教10年。1961年起一直担任Yale大学数学系教授,并于退休后被该校授予名誉教授。Massey在代数拓扑方面的工作闻名于世,“Massey积”就是以他的名字命名。他的著书很多,其中《代数拓扑学》,以及本书都是其中重要的著作。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航