- ISBN:9787030669995
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 开本:16开
- 页数:355
- 出版时间:2021-12-01
- 条形码:9787030669995 ; 978-7-03-066999-5
本书特色
适读人群 :It is also intended to convey up-to-date results to students and researchers in applied and computational mathematics,and engineering disciplines as well.本书关于麦克斯韦尔方程组理论和计算方法这一主题的数学理论是严格而深刻的。麦克斯韦尔方程组的计算方法是该书的亮点。
内容简介
本书系统地阐述周期性结构中的正、反散射理论,它涵盖了周期结构中麦克斯韦方程组正、反散射问题的几乎所有主题,包括数学模型、物理原理、数学分析以及计算方法。该书首先介绍了电磁场和光栅的基本理论。对于正散射问题,本书详细介绍变分方法来研究解的适定性以及自适应有限元的数值计算方法。对于反散射问题,本书讨论了解的专享性、稳定性以及光栅界面重构的数值方法。此外,本书也介绍了此领域中的重要近期新发展,例如近场成像、时域散射问题、非线性光学和很优设计问题等。该书可以为攻读硕士和博士学位的研究生提供初步的材料,以介绍周期性结构中麦克斯韦方程的正、反散射理论。它还为应用和计算数学的研究人员以及不同相关学科,例如电磁学和光学的工程人员提供了近期新的深刻的数学结果和具有挑战性的问题。
目录
Contents
1 Maxwell’s Equations 1
1.1 Electromagnetic Waves 1
1.2 Jump and Boundary Conditions 6
1.3 Two Fundamental Polarizations 9
References 12
2 Diffraction Grating Theory 13
2.1 Perfectly Conducting Gratings 14
2.2 Dielectric Gratings 22
2.3 Biperiodic Gratings 32
2.3.1 Perfect Electric Conductors 33
2.3.2 Dielectric Media 38
References 42
3 Variational Formulations 45
3.1 The Dirichlet Problem 46
3.2 The Transmission Problem 53
3.3 Biperiodic Structures 59
3.3.1 Function Spaces 60
3.3.2 The Transparent Boundary Condition 68
3.3.3 The Variational Problem 76
References 84
4 Finite Element Methods 87
4.1 The Finite Element Method 89
4.1.1 Finite Element Analysis for TE Polarization 90
4.1.2 Finite Element Analysis for TM Polarization 94
4.2 Adaptive Finite Element PML Method 98
4.2.1 The PML Formulation 99
4.2.2 Transparent Boundary Condition for the PML Problem 102
4.2.3 Error Estimate of the PML Solution 105
4.2.4 The Discrete Problem 108
4.2.5 Error Representation Formula 109
4.2.6 A Posteriori Error Analysis 111
4.2.7 Numerical Results 114
4.3 Adaptive Finite Element DtN Method 118
4.3.1 The Discrete Problem 120
4.3.2 A Posteriori Error Analysis 122
4.3.3 TM Polarization 125
4.3.4 Numerical Results 126
4.4 Adaptive Finite Element PML Method for Biperiodic Structures 130
4.4.1 The PML Formulation 132
4.4.2 Transparent Boundary Condition for the PML Problem 135
4.4.3 Convergence of the PML Solution 140
4.4.4 The Discrete Problem 145
4.4.5 A Posteriori Error Analysis 148
4.4.6 Numerical Results 153
References 158
5 Inverse Diffraction Grating 163
5.1 Uniqueness Theorems 164
5.1.1 The Helmholtz Equation 165
5.1.2 Maxwell’s Equations 170
5.2 Local Stability 175
5.2.1 The Helmholtz Equation 176
5.2.2 Maxwell’s Equations 182
5.3 Numerical Methods 193
References 200
6 Near-Field Imaging 205
6.1 Near-Field Data 208
6.1.1 The Variational Problem 210
6.1.2 An Analytic Solution 215
6.1.3 Convergence of the Power Series 219
6.1.4 The Reconstruction Formula 224
6.1.5 Error Estimates 228
6.1.6 Numerical Results 232
6.2 Far-Field Data 233
6.2.1 The Reduced Problem 236
6.2.2 Transformed Field Expansion 238
6.2.3 The Reconstruction Formula 242
6.2.4 A Nonlinear Correction Scheme 243
6.2.5 Numerical Results 244
6.3 Maxwell’s Equations 245
6.3.1 The Reduced Model Problem 248
6.3.2 Transformed Field Expansion 249
6.3.3 The Zeroth Order Term 253
6.3.4 The First Order Term 254
6.3.5 The Reconstruction Formula 256
6.3.6 Numerical Results 258
References 261
7 Related Topics 267
7.1 Method of Boundary Integral Equations 267
7.1.1 Model Problems 268
7.1.2 Quasi-periodic Green’s Function 270
7.1.3 Boundary Integral Operators 273
7.1.4 Boundary Integral Equations 277
7.1.5 Integral Formulas for Rayleigh’s Coefficients 280
7.2 Time-Domain Problems 282
7.2.1 Problem Formulation 282
7.2.2 Time-Domain Transparent Boundary Condition 286
7.2.3 The Reduced Problem 291
7.2.4 A Priori Estimates 297
7.3 Nonlinear Gratings 302
7.3.1 SHG Model 303
7.3.2 TE-TE Polarization 305
7.3.3 TM-TE Polarization 310
7.4 Optimal Design Problems 315
7.4.1 The Model Problem 316
7.4.2 The Optimal Design Problem 318
7.4.3 Homogenization of the Design Problem 320
7.4.4 The Relaxed Problem 323
References 326
Appendices 331
Tndex 351
Book list of the Series in Information and Computational Science 357
节选
Chapter 1 Maxwell’s Equations Since Maxwell established a foundation of the modem electromagnetic theory in 1873 [1],electromagnetics has undergone a rapid development and has been one of the most important research areas in engineering and science. It demands the study of Maxwell's equations and their application to the analysis and design of devices and systems. Maxwell’s equations represent one of the most concise statements of the fundamentals of electricity and magnetism. They are essential in describing the propagation of electromagnetic waves. Maxwell’s equations have marked a unification of electromagnetic theory, and enabled many modem developments, such as in radar and antennas, optics, remote sensing, wireless communication, medical imaging, and etc. This chapter provides a brief introduction to the electromagnetic theory. The focus is on the differential form of Maxwell’s equations and some commonly used boundary conditions, which are needed to specify boundary value problems. When the structure is invariant along a certain direction, the electromagnetic fields may exhibit some polarization. We discuss two fundamental polarizations for the time-harmonic Maxwell equations and the corresponding boundary conditions. For more details on the electromagnetic theory, the reader can consult the monographs of Harrington [2], Kraus [3],Jackson [4],and Stratton [5]. 1.1 Electromagnetic Waves Maxwell’s equations are a set of fundamental equations that govern all electromagnetic phenomena. For general time dependent electromagnetic fields, Maxwell’s equations in differential form are given by where E is the electric field intensity, H is the magnetic field intensity, D is the electric flux density, B is the magnetic flux density, J is the electric current density, and p is the electric charge density. Taking the divergence on both sides of (1.2), using (1.3) and the identity we obtain the equation of continuity Maxwell’s equations (1.1)-(1.4) are in indefinite form since the number of equations is less than the number of unknowns. They become definite when constitutive relations between the field quantities are specified. The constitutive relations describe macroscopic properties of the medium being considered. For a linear medium, they are (1.5) where e is the electric permittivity, μ is the magnetic permeability, and a is the electrical conductivity. The electric permittivity of free space (a vacuum) is denoted as eo, which is also called the electric constant. The permittivity of a dielectric medium is often represented by the ratio of its absolute permittivity to the electric constant, This dimensionless quantity is called relative permittivity and is commonly referred to as the dielectric coefficient. The parameters e,
-
昆虫采集制作及主要目科简易识别手册
¥17.5¥50.0 -
勒维特之星-大发现系列丛书
¥4.0¥16.0 -
昆虫的生存之道
¥14.1¥38.0 -
改变世界的发现
¥16.8¥48.0 -
喜马拉雅山珍稀鸟类图鉴
¥27.9¥68.0 -
宇宙与人
¥12.3¥35.0 -
声音简史
¥18.2¥52.0 -
星空探奇
¥14.4¥39.0 -
古文诗词中的地球与环境事件
¥9.8¥28.0 -
隐秩序:适应性造就复杂性
¥14.7¥39.8 -
中国古代科学思想二十讲
¥15.1¥43.0 -
希格斯:“上帝粒子”的发明与发现
¥14.4¥48.0 -
民国时期机电技术
¥15.8¥45.0 -
不匹配的一对:动物王国的性别文化
¥13.7¥42.8 -
几何原本
¥35.6¥93.6 -
折纸中的几何练习
¥17.8¥48.0 -
宇宙、量子和人类心灵
¥43.5¥58.0 -
科学之死:20世纪科学哲学思想简史
¥16.0¥50.0 -
图说相对论(32开平装)
¥17.0¥46.0 -
自然感悟丛书街巷里的四季:成都草木寻踪
¥18.0¥50.0