×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
军队院校招生文化科目统考复习用书·数学

军队院校招生文化科目统考复习用书·数学

¥13.7 (2.8折) ?
00:00:00
1星价 ¥19.6
2星价¥19.6 定价¥49.0

温馨提示:5折以下图书主要为出版社尾货,大部分为全新(有塑封/无塑封),个别图书品相8-9成新、切口有划线标记、光盘等附件不全详细品相说明>>

图文详情
  • ISBN:9787519273712
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:16开
  • 页数:248
  • 出版时间:2020-04-01
  • 条形码:9787519273712 ; 978-7-5192-7371-2

本书特色

印刷批次不同,图书封面可能与实际展示有所区别,增值服务也可能会有所不同,以读者收到实物为准《中公版·2023军队院校招生文化科目统考复xi用书:数学》是中公教育研发团队在深度调研了军队院校招生文化科目统考中数学学科考试的特点,总结命题规律和趋势的基础上编写而成的,本书具有以下特色: 1.遵循教学规律,科学编排内容。 2.正文部分细致梳理知识点,重要考点后配有经典例题,便于考生复xi。 3.本书配有知识拓展,给考生提供应试策略。 4.依据试题特点,讲解方法技巧。 5.在每一章后面配有强化练xi,便于考生巩固所学知识。

内容简介

本书为高中应届毕业生和士兵考军校的复习用书数学科目,内容包括高中数学知识点(集合、简易逻辑、函数、三角函数、数列、平面向量、立体几何、直线与圆、圆锥曲线、计数原理、计数与原理、统计与概率、极限与导数、复数)。本书严格依据考试大纲,分析考情,阐述高频考点及备考规划,帮助考生了解考情,充分备考,帮助考生快速备考。学生合理使用本书,重点在于充分解读本书的重点知识点,理解的基础上多加练习,反复琢磨,才能深入理解知识点及达到熟练掌握的目的。

目录

目录
章集合与简单逻辑
考纲要求
节集合
第二节简单逻辑
解题方法与技巧
强化练xi
第二章函数
考纲要求
节函数的概念与基本性质
第二节基本初等函数
第三节函数的应用
解题方法与技巧
强化练xi
第三章数列
考纲要求
解题方法与技巧
强化练xi
第四章三角函数
考纲要求
节三角函数
第二节三角恒等变换
第三节解斜三角形
解题方法与技巧
强化练xi
第五章向量
考纲要求
节平面向量
第二节空间向量
解题方法与技巧
强化练xi
第六章不等式
考纲要求
节不等式与不等关系
第二节不等式的解法
第三节简单的线性规划问题
解题方法与技巧
强化练xi
第七章立体几何初步
考纲要求
节空间几何体
第二节点、线、面之间的位置关系
解题方法与技巧
强化练xi
第八章直线与圆的方程
考纲要求
节直线与方程
第二节圆与方程
解题方法与技巧
强化练xi
第九章圆锥曲线
考纲要求
解题方法与技巧
强化练xi
第十章排列、组合与二项式定理
考纲要求
节排列、组合
第二节二项式定理
解题方法与技巧
强化练xi
第十一章概率与统计
考纲要求
节概率
第二节统计
解题方法与技巧
强化练xi
第十二章推理与证明
考纲要求
解题方法与技巧
强化练xi
第十三章导数及其应用
考纲要求
节极限与连续
第二节导数
解题方法与技巧
强化练xi
第十四章复数
考纲要求
解题方法与技巧
强化练xi
综合练xi一
综合练xi二
附录常用公式
展开全部

节选

章集合与简单逻辑 考纲要求 知识点生长军官军士集合的概念及表示了解集合的含义、元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题 集合间的基本关系理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义集合的基本运算理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用韦恩(Venn)图表达集合的关系及运算命题及其关系、充分条件、必要条件理解命题的概念;了解“若 p,则 q”形式的命题及其逆命题,否命题与逆否命题,会分析四种命题的相互关系;理解必要条件、 充分条件与充要条件的意义逻辑连接词、全称量词、存在量词了解逻辑联结词“或”、“且”、“非” 的含义;了解全称量词与存在量词的意义节集合一、集合的概念与表示方法1.集合的定义一般地,我们把研究的对象统称为元素,把一些元素组成的总体叫作集合(简称集)。 2.集合中元素的特性 确定性:给定一个集合,那么一个元素在或不在这个集合中就确定了。而“个子较高的同学”“肤色较黑的人”都不能构成集合,因为组成它的元素是不确定的。 互异性:集合中的任何两个元素都不相同,即在同一集合里不能出现相同元素。如由HAPPY的字母组成的集合为{H,A,P,Y}。 无序性:在同一个集合里,任意改变集合中元素的排列次序,它们仍然表示同一个集合。如集合{a,b,c,d}与{b,d,c,a}表示相同的集合。 3.集合的分类 有限集:含有有限个元素的集合。 无限集:含有无限个元素的集合。 空集:不含有任何元素的集合,记作。如{xx2=-5,x∈R}=。 注:①空集表示集合中没有任何元素。 ②{0}表示集合中只有一个元素,且该元素为“0”,是有限集。 ③{}表示集合中只有一个元素,且该元素为“”,是有限集。 4.集合的表示方法 通常我们用大写的拉丁字母A,B,C,…来表示集合,如A={我校的篮球运动员};用小写的拉丁字母a,b,c,…来表示集合中的元素,如B={a,b,c}。 常用的集合表示方法有以下几种。 (1)自然语言法:用自然语言的形式来描述集合。如“不是直角三角形的三角形”。 (2)列举法:把集合中的元素一一列举出来,写在大括号内表示集合。如{1,2,3}。 图1-1(3)描述法:将集合中的元素的公共属性描述出来,写在大括号里,形式如{xx<10,x∈R}。 (4)图示法:用数轴或韦恩图来表示集合。其中,韦恩图也叫文氏图,它既可以表示一个独立的集合,也可以表示集合与集合之间的相互关系。如图1-1。 常用数集及其记法见表1-1。 表1-1常用的数集及其记法 名称自然数集正整数集整数集有理数集实数集符号NN*或N+ZQR注:①{(x,y)xy =0,x∈R,y∈R}表示坐标轴上的点集。 ②{(x,y)xy<0,x∈R,y∈R}表示二、四象限内的点集。 ③{(x,y)xy>0,x∈R,y∈R}表示一、三象限内的点集。 5.元素与集合的关系 元素与集合是属于或不属于的关系。例如,元素a在集合M中,可以记作a∈M。符号“∈”读作“属于”,“”读作“不属于”。 二、集合间的基本关系1.子集一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,则称集合A是集合B的子集,记作AB(或BA),读作“A包含于B”(或“B包含A”)。 2.真子集 对于两个集合A,B,如果集合AB,但存在元素x∈B,且xA,则称集合A是集合B的真子集,记作AB(或BA),读作“A真包含于B”(或“B真包含A”)。 3.集合相等 如果构成两个集合的元素是一样的,即集合A中的任意一个元素都是集合B中的元素,集合B中的任意一个元素都是集合A中的元素,那么称集合A与集合B相等,记作A=B。 子集、真子集与集合相等的性质及韦恩图如表1-2所示。 表1-2子集、真子集与集合相等的性质及韦恩图 名称记号性质韦恩图子集AB或BA(1)AA (2)A (3)若AB且BC,则AC (4)若AB且BA,则A=B或真子集AB或BA(1)A(A为非空子集) (2)若AB且BC,则AC集合相等A=BAB且BA注:①空集是任何集合的子集。②任何一个集合是它自身的子集。③集合的子集和真子集具有传递性。④已知集合A有n(n≥1)个元素,则它有2n个子集,(2n-1)个真子集,(2n-1)个非空子集,(2n-2)个非空真子集。 三、集合的基本运算 全集:一般地,如果一个集合包含我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U。 表1-3集合的基本运算 运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合叫作A,B的交集,记作A∩B(读作“A交B”),即A∩B={xx∈A且x∈B}由所有属于A或属于B的元素所组成的集合叫作A,B的并集,记作A∪B(读作“A并B”),即A∪B={xx∈A或x∈B}设U是一个集合,A是U的一个子集,由U中所有不属于A的元素组成的集合,叫作U中子集A的补集(或余集),记作瘙綂UA,即??瘙綂UA={xx∈U且xA}韦恩图示性质A∩A=A A∩= A∩B=B∩A A∩BA A∩BBA∪A=A A∪=A A∪B=B∪A A∪BA A∪BB(??瘙綂UA)∩(??瘙綂UB)=??瘙綂U(A∪B) (??瘙綂UA)∪(??瘙綂UB)=??瘙綂U(A∩B) A∪(??瘙綂UA)=U A∩??瘙綂UA= 数形结合是求解集合问题的常用方法,解题要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决。如:集合的交、并、补等运算。 经典例题 已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()。 A. 9B. 8 C. 5D. 4 【答案】A。解析:集合A中的元素是有序整数对,所有满足条件的元素有(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共9个。故本题选A。第二节简单逻辑一、四种命题及其关系1.命题的定义一般地,用语言、符号或式子表达的,可以判断真假的陈述句叫作命题。判断为真的语句叫作真命题,判断为假的语句叫作假命题。我们常用小写字母p,q,r,…来表示命题。 2.四种命题 对于大部分命题,我们都可以将其改写成“若m,则n”的形式,如“垂直于同一条直线的两个平面平行”就可以改写成“若两个平面垂直于同一条直线,则这两个平面平行”。我们把命题“若m,则n”中的m叫作命题的条件,n叫作命题的结论。 如果一个命题的条件和结论恰好是另一个命题的结论和条件,那么这两个命题叫作互逆命题。如果把其中一个命题叫作原命题,那么另一个叫作原命题的逆命题。 如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,那么这两个命题叫作互否命题。如果把其中一个命题叫作原命题,那么另一个叫作原命题的否命题。 如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,那么这两个命题叫作互为逆否命题。如果把其中一个命题叫作原命题,那么另一个叫作原命题的逆否命题。 综上,设“若m,则n”是原命题,那么 “若n,则m”是原命题的逆命题; “若m,则n”是原命题的否命题; “若n,则m”是原命题的逆否命题。 3.四种命题间的相互关系 两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系。四种命题的关系如图1-2。 图1-2 二、充分条件与必要条件1.充分条件与必要条件的定义一般地,“若q,则p”是真命题,是指由q通过推理可以得出p。此时,我们称由q可推出p,记作 q  p, 并说q是p的充分条件,p是q的必要条件。 如果“若q,则p”是假命题,那么称由q推不出p,记作 qp, 并说q不是p的充分条件,p不是q的必要条件。 如果既有q  p,又有p  q,那么称q等价于p,记作 q  p, 并说q是p的充分必要条件,简称充要条件。 显然,如果q是p的充要条件,那么p也是q的充要条件。概括地说,如果q  p,那么q与p互为充要条件。 2.判断方法 在判断充分条件与必要条件时,首先要弄清楚什么是条件,什么是结论;然后用条件推结论,再用结论推条件,后进行判断。 (1)定义法 ①若p  q,但qp,则p是q的充分而不必要条件; ②若pq,但q  p,则p是q的必要而不充分条件; ③若p  q且q  p,则p是q的充要条件; ④若pq且qp,则p是q的既不充分也不必要条件。 (2)集合法 已知A={xx满足条件p},B={xx满足条件q}, ①若AB,则p是q的充分而不必要条件; ②若BA,则p是q的必要而不充分条件; ③若AB且BA,则p是q的既不充分也不必要条件; ④若A=B,则p是q的充要条件。 经典例题 对于实数x,y,命题p:x+y=3,命题q:x=1且y=2,则p是q的()。 A.充要条件B.充分不必要条件 C.必要不充分条件D.既不充分也不必要条件 【答案】C。解析:方法一(定义法),由x+y=3不能推出x=1且y=2,反之,当x=1且y=2,则x+y=3,故p是q的必要不充分条件。方法二(集合法),令A={(x,y)|x+y=3},B={(x,y)|x=1且y=2},因为BA,所以p是q的必要不充分条件。故本题选C。三、简单的逻辑联结词1.逻辑联结词用逻辑联结词“且”把命题p和命题q联结起来,得到一个新命题,记作 p∧q, 读作“p且q”。如命题p:“3是质数”,命题q:“3是奇数”,用“且”联结构成的新命题p∧q:“3是质数且是奇数”。 用逻辑联结词“或”把命题p和命题q联结起来,得到一个新命题,记作 p∨q, 读作“p或q”。如命题p:“△ABC是锐角三角形”,命题q:“△ABC是钝角三角形”,用“或”联结构成的新命题p∨q:“△ABC是锐角三角形或钝角三角形”。 用逻辑联结词“非”对命题p否定,得到一个新的命题,记作 p, 读作“非p”或“p的否定”。如命题p:“12是3的倍数”,它的否定p:“12不是3的倍数”。 2.简单命题与复合命题 简单命题:不含逻辑联结词的命题。 复合命题:由简单命题与逻辑联结词构成的命题。 表1-4复合命题的真假判断 pqp∧qp∨qp真真真真假真假假真假假真假真真假假假假真 逻辑联

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航