×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
暂无评论
图文详情
  • ISBN:9787568087650
  • 装帧:精装
  • 册数:暂无
  • 重量:暂无
  • 开本:16开
  • 页数:351
  • 出版时间:2023-03-01
  • 条形码:9787568087650 ; 978-7-5680-8765-0

本书特色

该书由我国振动领域领衔专家闻邦椿院士撰写,系统性介绍了振动利用工程。该书入选“十三五”国家重点图书出版规划项目。

内容简介

This book contains seven chapters. Chapter 1 introduces the formation and devel?opment of the Vibration Utilization Engineering; Chap. 2 devotes to some of the important research results in the vibration and waveenergy utilization in some technological processes; Chap. 3 describes the theories on the technological process of the vibration utilization technology and equipments; Chaps. 4 and 5 discuss the vibration utilizations of the linear, pseudo-linear, and non-linear systems; Chap. 6 presents the utilization of the wave and wave-energy; and Chap. 7 briefly illustrates the vibration phenomena and utilizations in the Natures and human societies.

目录

1 Formation and Development of Vibration Utilization

Engineering ................................................... 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Vibrating Machines and Instruments and Application of Its

Related Technology and Development . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Applications and Developments of Nonlinear Vibration

Utilization Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Applications and Developments of Wave Motion and Wave

Energy Utilization Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Applications of Electrics, Magnetic and Light Oscillators

in Engineering Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Applications of Electrics, Magnetic and Light Oscillators

in Engineering Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.7 Vibrating Phenomena, Patterns and Utilization in Natures . . . . . . . 18

1.8 Vibrating Phenomena, Patterns and Utilization in Human

Society . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.9 Vista . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Some Important Results in Vibration and Wave Utilization

Engineering Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 Utilization of Vibrating Conveyors Technology . . . . . . . . . . . . . . . . 22

2.2 Applications of Vibrating Screening Technology . . . . . . . . . . . . . . . 24

2.3 Applications of Vibrating Centrifugal Hydro-Extraction

and Screening Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Applications of Vibrating Crush and Milling Technology . . . . . . . . 29

2.5 Applications of Vibrating Rolling and Forming Technology . . . . . 31

2.6 Applications of Vibrating Tamping Technology . . . . . . . . . . . . . . . . 33

2.7 Applications of Vibrating Ramming Technology . . . . . . . . . . . . . . . 34

2.8 Applications of Vibration Diagnostics Technology . . . . . . . . . . . . . 35

2.9 Applications of Synchronous Vibrating Theory . . . . . . . . . . . . . . . . 37

2.10 Applications of Resonance Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.10.1 The General Utilization of the Resonance . . . . . . . . . . . . . 38

2.10.2 Application of the Nuclear Magnetic Resonance . . . . . . . . 39

2.11 Applications of Hysteresis System . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.12 Applications of Impact Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.13 Applications of Slow-Changing Parameter Systems . . . . . . . . . . . . 42

2.14 Applications of Chaos Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.15 Applications of Piecewise Inertial Force . . . . . . . . . . . . . . . . . . . . . . 44

2.16 Applications of Piecewise Restoring Force . . . . . . . . . . . . . . . . . . . . 45

2.17 Utilization of Water Wave and Wind Wave . . . . . . . . . . . . . . . . . . . . 46

2.18 Applications of Tense or Elastic Waves . . . . . . . . . . . . . . . . . . . . . . . 47

2.19 Utilization of Supersonic Theory and Technology . . . . . . . . . . . . . . 47

2.19.1 The Application of the Supersonic Motor . . . . . . . . . . . . . . 48

2.19.2 Significance and Function in Medical Diagnostics

of B-Ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.20 Applications of Optical Fiber and Laser Technology . . . . . . . . . . . . 49

2.20.1 Application of the Optical Fiber Technology . . . . . . . . . . . 49

2.20.2 Application of Laser Technology . . . . . . . . . . . . . . . . . . . . . 50

2.21 Utilizations of Ray Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.22 Utilization of Oscillation Theory and Technology . . . . . . . . . . . . . . 51

2.23 Utilization of Vibrating Phenomena and Patterns

in Meteorology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.24 Utilization of Vibrating Phenomena and Patterns in Social

Economy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.25 Utilizations of Vibrating Principles in Biology Engineering

and Medical Equipments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Theory of Vibration Utilization Technology and Equipment

Technological Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1 Theory and Technological Parameter Computation

of Material Movement on Line Vibration Machine . . . . . . . . . . . . . 57

3.1.1 Theory of Sliding Movement of Materials . . . . . . . . . . . . . 58

3.1.2 Theory of Material Throwing Movement . . . . . . . . . . . . . . 69

3.1.3 Selections of Material Movement State

and Kinematics Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.1.4 Calculation of Real Conveying Speed

and Productivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.1.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.2 Theory and Technological Parameter Computation

of Circular and Ellipse Vibration Machine . . . . . . . . . . . . . . . . . . . . 89

3.2.1 Displacement, Velocity and Acceleration

of Vibrating Bed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.2.2 Theory of Material Sliding Movements . . . . . . . . . . . . . . . 91

3.2.3 Theory of Material Throwing Movements . . . . . . . . . . . . . 96

Contents xiii

3.3 Basic Characteristics of Material Movement

in Non-harmonic Vibration Machines . . . . . . . . . . . . . . . . . . . . . . . . 102

3.3.1 Initial Conditions for Positive and Negative Sliding

Movements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.3.2 Stopping Conditions for Positive and Negative

Sliding Movements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.3.3 Calculations of Averaged Material Velocity . . . . . . . . . . . . 104

3.4 Theory on Material Movement in Vibrating Centrifugal

Hydroextractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.4.1 Basic Characteristics of Material Movement

on Upright Vibration Hydroextractor . . . . . . . . . . . . . . . . . 106

3.4.2 Characteristics of Material Movement

on Horizontal Vibration Hydroextractor . . . . . . . . . . . . . . . 114

3.4.3 Computation of Kinematics and Technological

Parameters of Vibration Centrifugal Hydroextractor . . . . . 115

3.5 Probability Theory on Material Screening Process . . . . . . . . . . . . . . 119

3.5.1 Probability of Screening for Material Particle Per

Jump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.5.2 Falling Incline Angle and Number of Jumps

of Materials on Screen Length . . . . . . . . . . . . . . . . . . . . . . . 123

3.5.3 Calculation of Probability of Material Going

Through Screens for a General Vibration Screen . . . . . . . . 124

3.5.4 Calculation of Probability of Material Going

Through Screens for a Multi-screen Vibrating

Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

3.6 Classification of Screening Method and Probability

Thick-Layer Screening Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

3.6.1 Screening Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

3.6.2 Screening Methods for Probability Thick Layer

Screens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

3.7 Dynamic Theory of Vibrating Machine Technological

Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4 Linear and Pseudo Linear Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.1 Dynamics of Non-resonant Vibrating Machines of Planer

Single-Axis Inertial Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.2 Dynamics of Non-resonant Vibrating Machines of Spatial

Single-Axis Inertial Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.3 Dynamics of Non-resonant Vibration Machines

of Double-Axis Inertial Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.3.1 Dynamics of Non-resonant Vibrating Machines

of Planer Double-Axis Inertial Type . . . . . . . . . . . . . . . . . . 153

4.3.2 Dynamics of Non-resonant Vibration Machines

of Spatial Double-Axis Inertial Type . . . . . . . . . . . . . . . . . . 157

xiv Contents

4.4 Dynamics of Non-resonant Vibration Machines of Multi-axis

Inertial Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.4.1 General Pattern of Planer Movement . . . . . . . . . . . . . . . . . . 159

4.4.2 Values of Displacement, Velocity and Acceleration

Curves and Differential Coefficients When θ2 is

Equal to /2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.5 Dynamics of Inertial Near-Resonant Type of Vibration

Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

4.5.1 Dynamics of Single Body Near-Resonant Vibration

Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

4.5.2 Dynamics of Double Body Near-Resonant

Vibration Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

4.6 Dynamics of Single Body Elastic Connecting Rod Type

of Near Resonance Vibration Machines . . . . . . . . . . . . . . . . . . . . . . . 168

4.7 Dynamics of Double Body Elastic Connecting Rod Type

of Near Resonance Vibration Machines . . . . . . . . . . . . . . . . . . . . . . . 171

4.7.1 Balanced Type of Vibration Machines with Double

Body Elastically Connecting Rod . . . . . . . . . . . . . . . . . . . . 171

4.7.2 Non-balance Double Body Type of Elastically

Connecting Rod Vibration Machines . . . . . . . . . . . . . . . . . . 173

4.8 Multi-body Elastic-Connecting Rod Type of Near-Resonant

Vibration Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

4.9 Dynamics of Electric–Magnetic Resonant Type of Vibrating

Machines with Harmonic Electric–Magnetic Force . . . . . . . . . . . . . 180

4.9.1 Basic Categories of Electric–Magnetic Forces

of Electric–Magnetic Vibration Machines . . . . . . . . . . . . . 180

4.9.2 Dynamics of Electric–Magnetic Type of Vibrating

Machines with Harmonic Electric–Magnetic Force . . . . . 180

4.9.3 Amplitudes and Phase Angle Differentials

of One-Half-Period Rectification EMTVM . . . . . . . . . . . . 184

4.9.4 Amplitudes and Phase Angle Differentials

of One-Half-Period Plus One-Period Rectification

EMTVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

4.10 Dynamics of Electric–Magnetic Type of Near-Resonant

Vibration Machines with Non-Harmonic Electric–Magnetic

Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

4.10.1 Relationships Between Electric–Magnetic Force

and Amplitudes of Controlled One-Half-Period

Rectification EMTVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

4.10.2 Relationships Between Electric–Magnetic Force

and Amplitudes of the Decreased Frequency

EMTVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Contents xv

5 Utilization of Nonlinear Vibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

5.2 Utilization of Smooth Nonlinear Vibration Systems . . . . . . . . . . . . 201

5.2.1 Measurement of Dry Friction Coefficients Between

Axis and Its Bushing Using Double Pendulum . . . . . . . . . 201

5.2.2 Measurement of Dynamic Friction Coefficients

of Rolling Bearing Using Flode Pendulum . . . . . . . . . . . . . 203

5.2.3 Increase the Stability of Vibrating Machines Using

Hard-Smooth Nonlinear Vibrating Systems . . . . . . . . . . . . 207

5.3 Engineering Utilization of Piece-Wise-Linear Nonlinear

Vibration Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

5.3.1 Hard-Symmetric Piece-Wise Linear Vibration

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

5.3.2 Soft-Asymmetric Piece-Wise Linear Vibration

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

5.3.3 Nonlinear Vibration Systems with Complex

Piece-Wise Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

5.4 Utilization of Vibration Systems with Hysteresis Nonlinear

Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

5.4.1 Simplest Hysteresis Systems . . . . . . . . . . . . . . . . . . . . . . . . 223

5.4.2 Hysteresis Systems with Gaps . . . . . . . . . . . . . . . . . . . . . . . 226

5.5 Utilization of Self-excited Vibration Systems . . . . . . . . . . . . . . . . . . 231

5.6 Utilization of Nonlinear Vibration Systems with Impact . . . . . . . . . 233

5.7 Utilization of Frequency-Entrainment Principles . . . . . . . . . . . . . . . 236

5.7.1 Synchronous Theory of Self-synchronous Vibrating

Machine with Eccentric Exciter . . . . . . . . . . . . . . . . . . . . . . 238

5.7.2 Double Frequency Synchronization of Nonlinear

Self-synchronous Vibration Machines . . . . . . . . . . . . . . . . . 250

5.8 Utilization of Nonlinear Vibration Systems with Nonlinear

Inertial Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

5.8.1 Movement Equations for Vibration Centrifugal

Hydro-Extractor with Nonlinear Inertial Force . . . . . . . . . 259

5.8.2 Nonlinear Vibration Responses of Vibration

Centrifugal Hydro-Extractor . . . . . . . . . . . . . . . . . . . . . . . . . 261

5.8.3 Frequency-Magnitude Characteristics of Vibration

Centrifugal Hydro-Extractor . . . . . . . . . . . . . . . . . . . . . . . . . 263

5.8.4 Experiment Vibration Responses of Vibration

Centrifugal Hydro-Extractor . . . . . . . . . . . . . . . . . . . . . . . . . 264

5.9 Utilization of Slowly-Changing Parameter Nonlinear

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

5.9.1 Slowly-Changing Systems Formed in Processes

of Starting and Stopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

5.9.2 Slowly-Changing Rotor Systems Formed in Active

Control Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

xvi Contents

5.10 Utilization of Chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

5.10.1 Major Methods for Studying Chaos . . . . . . . . . . . . . . . . . . . 271

5.10.2 Software of Studying Chaos Problems . . . . . . . . . . . . . . . . 273

5.10.3 Application Examples of Chaos . . . . . . . . . . . . . . . . . . . . . . 275

6 Utilization of Wave and Wave Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

6.1 Utilization of Tidal Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

6.2 Utilization of Sea Wave Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

6.3 Utilization of Stress Wave in Vibrating Oil Exploration . . . . . . . . . 288

6.3.1 Mechanism and Working Principles of Controllable

Super-Low Frequency Vibration Exciters . . . . . . . . . . . . . . 289

6.3.2 Effect of Stress Wave on Oil Layers . . . . . . . . . . . . . . . . . . 290

6.3.3 Experiment Results and Analysis . . . . . . . . . . . . . . . . . . . . . 299

6.3.4 Elastic Stress Wave Propagation When

a Controllable Vibration Source is Working . . . . . . . . . . . . 305

7 Utilization of Vibrating Phenomena and Patterns in Nature

and Society . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

7.1 Utilization of Vibration Phenomena and Patterns

in Meteorology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

7.2 Periodical Vibration and Utilization of the Tide . . . . . . . . . . . . . . . . 316

7.3 Vibration Patterns and Utilization in Other Natural

Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

7.3.1 Periodical Phenomenon of Tree Year-Rings . . . . . . . . . . . . 318

7.3.2 Bee’s Communications Using Vibrations . . . . . . . . . . . . . . 319

7.4 Utilization of Vibration Phenomena and Patterns in Some

Economy Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

7.4.1 Fluctuation and Nonlinear Characteristics in Social

Economy Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

7.4.2 Growth and Decline Period in Social Economy

Development Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

7.4.3 Active Role of Macro-adjustment in Preventing

Big Economy Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . 325

7.5 Utilization of Vibration Phenomena and Patterns in Stock

Market . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

7.5.1 Stock Fluctuation is One of Typical Types

of Economy Change Form in Social Economy Fields . . . . 326

7.5.2 Stock Market Characteristics and General Patterns

of Oscillation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

7.5.3 Some Principles in Stock Operations . . . . . . . . . . . . . . . . . . 332

7.6 Obey the General Rules in the Stock Operations . . . . . . . . . . . . . . . 332

7.7 The Entering Point and Withdrawing Points in the Stock

Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

Contents xvii

7.8 Utilization of Vibration Phenomena and Pattern in Human

Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

7.8.1 Vibration is a Basic Existing Form of Many Human

Organs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

7.8.2 Some Diseases Make Abnormal Fluctuations

(Vibration) in Human Organs Physical Parameters . . . . . . 336

7.8.3 Medical Devices and Equipment Based

on Vibration Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

7.8.4 Artificial Organs and Devices Using Vibration

Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

7.9 Prospect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
展开全部

作者简介

闻邦椿,1930年生,教授,博士生导师,中国科学院院士。国际机器理论与机构学联合会(IFToMM)中国委员会委员,国际转子动力学技术委员会委员,亚太振动会议指导委员会委员, 中国振动工程学会名誉理事长;国务院学位委员会机械工程学科评议组成员等。主要研究方向:机械系统非线性动力学、振动利用工程、现代机械产品综合设计理论与方法。获国际奖两项, 国家发明奖和科技进步奖3项, 省、部、委级奖10余项,国家专利8项。发表论文700余篇, SCI、EI和ISTP三大检索论文150余篇。专著和主编的论文集14部。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航