×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
新能源车用燃料电池应用技术--质子交换膜燃料电池催化剂浆料制备与应用

新能源车用燃料电池应用技术--质子交换膜燃料电池催化剂浆料制备与应用

1星价 ¥96.6 (7.0折)
2星价¥96.6 定价¥138.0
暂无评论
图文详情
  • ISBN:9787122420565
  • 装帧:平装
  • 册数:暂无
  • 重量:暂无
  • 开本:16开
  • 页数:278
  • 出版时间:2024-01-01
  • 条形码:9787122420565 ; 978-7-122-42056-5

本书特色

质子交换膜燃料电池催化剂浆料主要应用于汽车燃料电池,该项技术为国家能源战略中“卡脖子”关键技术之一。本书的出版将弥补国内质子交换膜燃料电池催化剂浆料方面科技专著空白。

内容简介

《质子交换膜燃料电池催化剂浆料制备与应用》主要围绕质子交换膜燃料电池催化剂浆料展开阐述,包括催化剂浆料的制备分散过程,重点介绍催化剂颗粒的分散机理和催化剂浆料的分散技术;催化剂浆料的内部组分间的相互作用,重点介绍催化剂浆料中溶剂、离聚物和颗粒间的相互作用,以及这些相互作用对浆料的影响;催化剂浆料的稳定性,重点介绍催化剂浆料的稳定性机理以及浆料新物质的产生和影响;催化剂浆料的建模方法;催化剂浆料的成膜过程以及应用,重点介绍卷对卷过程中催化剂浆料的结构演变以及制备成催化层、膜电极和电堆后的实际应用性能。 《质子交换膜燃料电池催化剂浆料制备与应用》可供开展燃料电池研究的高校相关专业师生作为教材,也可供相关科研院所研究人员和企业研发人员参考。

目录

第1章 质子交换膜燃料电池催化剂浆料的组成、特点和发展趋势
1.1 概述 001
1.1.1 燃料电池的研究现状 001
1.1.2 燃料电池的发展简史和分类 002
1.1.3 质子交换膜燃料电池的工作原理 003
1.1.4 质子交换膜燃料电池的催化层 005
1.1.5 质子交换膜燃料电池的催化剂浆料 005
1.2 质子交换膜燃料电池催化剂浆料的组成 007
1.2.1 载体 007
1.2.2 催化剂 011
1.2.3 离子聚合物 016
1.2.4 分散介质 018
1.3 质子交换膜燃料电池催化剂浆料的特点 019
1.3.1 I/C比 019
1.3.2 催化剂浆料的微观结构 020
1.3.3 催化剂浆料的可加工性 021
1.4 质子交换膜燃料电池催化剂浆料的制备和应用发展趋势 022
参考文献 024

第2章 催化剂浆料的分散
2.1 催化剂浆料分散特性 030
2.1.1 催化剂浆料分散的需求 030
2.1.2 催化剂浆料分散制备存在的问题 032
2.2 颗粒的分散 034
2.2.1 颗粒分散过程 034
2.2.2 催化剂颗粒分散特征 037
2.2.3 颗粒与流体之间的关系 038
2.2.4 颗粒在液相中的分散与调控 042
2.2.5 颗粒在液相中分散的主要影响因素 046
2.3 催化剂浆料分散制备方法 048
2.3.1 机械搅拌 048
2.3.2 超声分散 050
2.3.3 球磨分散 053
参考文献 055

第3章 催化剂浆料内部组分间的相互作用
3.1 离聚物的溶剂化作用 060
3.1.1 离聚物的性质 060
3.1.2 离聚物对溶剂的表面活性 062
3.1.3 离聚物的溶解 064
3.1.4 离聚物的解离 066
3.1.5 离聚物的浓度影响 069
3.2 溶剂与催化剂相互作用 071
3.2.1 溶剂与碳载体间的相互作用 071
3.2.2 溶剂对碳载体的润湿行为 073
3.2.3 碳载体的结构形貌影响 073
3.2.4 溶剂与Pt金属颗粒间的相互作用 075
3.3 离聚物与催化剂的相互作用 076
3.3.1 碳载体对离聚物的吸附作用 077
3.3.2 碳载体的比表面积影响 079
3.3.3 碳载体的石墨化程度影响 080
3.3.4 碳载体的表面官能团影响 081
3.3.5 铂颗粒对离聚物的吸附作用 082
3.4 催化剂浆料各组分间的相互作用 083
3.4.1 离聚物在催化剂浆料中的行为 083
3.4.2 催化剂浆料中团簇颗粒凝聚行为 084
3.4.3 催化剂浆料的微观结构 085
参考文献 088

第4章 催化剂浆料的稳定性
4.1 浆料团簇的沉降过程 091
4.1.1 浆料团簇的沉降理论 091
4.1.2 浆料团簇的扩散 092
4.1.3 浆料团簇沉降-扩散平衡 094
4.2 浆料团簇的团聚 095
4.2.1 催化剂浆料团簇的迁移理论 095
4.2.2 浆料团簇间相互作用 106
4.2.3 浆料团簇的分形结构 115
4.3 浆料中新物质的产生及影响 120
4.3.1 新物质的产生 120
4.3.2 新物质对浆料稳定性的影响 121
4.4 浆料稳定性的调控 122
4.4.1 组分调控 122
4.4.2 添加剂调控 126
4.4.3 制备工艺调控 128
参考文献 130

第5章 催化剂浆料的建模方法
5.1 密度泛函理论 136
5.1.1 基本理论 136
5.1.2 交换关联近似与泛函 137
5.1.3 分子的构型优化 138
5.1.4 簇模型和周期平板模型 140
5.1.5 密度泛函理论的应用 141
5.2 格子玻尔兹曼法 142
5.2.1 格子玻尔兹曼法的基础理论 142
5.2.2 格子玻尔兹曼法的作用力模型 144
5.2.3 格子玻尔兹曼法的初始和边界条件 147
5.2.4 多相和多组分流体的格子玻尔兹曼法 150
5.2.5 格子玻尔兹曼法的应用 152
5.3 分子动力学模拟法 159
5.3.1 分子动力学模拟的基本理论 159
5.3.2 分子动力学模拟常用的分子力场 159
5.3.3 分子动力学模拟的技巧 161
5.3.4 分子动力学模拟的流程 166
5.3.5 分子动力学模拟法的应用 169
5.4 颗粒离散元法 171
5.4.1 颗粒离散元法基本原理 171
5.4.2 颗粒离散元法求解过程 172
5.4.3 颗粒离散元模拟方法特点 173
5.4.4 颗粒离散元法的应用 174
参考文献 176

第6章 催化剂浆料的成膜技术及单电池性能研究
6.1 狭缝涂布 180
6.1.1 狭缝涂布简介 180
6.1.2 狭缝涂布原理 181
6.1.3 狭缝涂布的影响因素 190
6.1.4 狭缝涂布制备催化剂涂敷膜 193
6.2 超声喷涂 195
6.2.1 超声喷涂简介 195
6.2.2 超声喷涂原理 196
6.2.3 超声喷涂的影响因素 201
6.2.4 超声喷涂制备催化剂涂敷膜 203
6.3 膜电极技术简介 205
6.3.1 质子交换膜 206
6.3.2 催化层 206
6.3.3 扩散介质层 207
6.3.4 层间界面 209
6.3.5 边框密封结构 210
6.4 单电池测试技术 217
6.4.1 燃料电池的极化原理与测试方法 217
6.4.2 电化学表征方法及实例 223
6.4.3 电化学隔离加速测试方法 226
6.4.4 动态隔离工况加速 226
参考文献 234

第7章 基于资质催化剂浆料的质子交换膜燃料电池堆应用实例
7.1 燃料电池电堆技术简介 238
7.1.1 电堆的组件与设计 238
7.1.2 电堆力学分析 241
7.1.3 电堆装配流程与方法 246
7.2 千瓦级电堆基于乘用车NEDC 工况的耐久性验证及衰减分析 254
7.2.1 电堆准备、测试条件及工况介绍 254
7.2.2 电堆性能衰减行为分析 255
7.2.3 电堆性能衰减机理分析 257
7.3 百千瓦级电堆耐久性验证与应用 271
7.3.1 百千瓦级电堆基本性能测试 271
7.3.2 氢燃料电池重型载货车工况耐久性验证 273
7.3.3 氢燃料电池机车工况耐久性测试 275
7.3.4 氢燃料混合动力机车应用案例 276
参考文献 277
展开全部

作者简介

李冰,同济大学汽车学院,副研究员,聚焦电容器高比能量技术和燃料电池膜电极与催化剂的抗电化学腐蚀技术,提出了车用电源所需的催化剂与电极、混合电容器提高动力性能及减少动态衰减的关键机制,形成了核心技术并实现工程应用,主持了国家自然科学基金2项,国家重大专项1项,中车重大项目1项,作为核心骨干参与国家863项目4项,重大仪器项目1项,主持省部级1项,系统开展了电容器的表面荷电和燃料电池的动态衰减过程,获得了大幅提升混合电容器的能量密度及动态工况下燃料电池膜电极和催化剂耐久性的结构定义;近5年,共发表*一或通讯作者SCI论文36篇,其中JCR一区18篇,SCI他引1698次(单篇650次;EIS 高被引论文2篇,热点论文1篇。申请发明专利10项,其中全球授权专利1项;获学术新人奖(2010),上海市优秀博士学位论文(2014),*二十届“工博会二等奖”(2018)。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航