×
暂无评论
图文详情
  • ISBN:9787519880958
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:16开
  • 页数:428
  • 出版时间:2023-12-01
  • 条形码:9787519880958 ; 978-7-5198-8095-8

本书特色

《国家发展改革委 国家能源局关于印发〈“十四五”新型储能发展实施方案〉的通知》(发改能源〔2022〕209 号)对新型储能发展提出了更高要求,到 2025 年,新型储能技术创新能力需显著提高,核心技术装备自主可控水平大幅提升,标准体系基本完善,产业体系日趋完备,市场环境和商业模式基本成熟。基于此,特编写《电力系统新型储能技术》一书。 本书详细介绍了电力系统储能的基础知识、分类、发展历程、定位及作用、评价指标体系等知识,重点讲述了机械储能(包括经典和新型抽水蓄能、压缩空气储能、液态空气储能、飞轮储能、二氧化碳储能、重力储能等)、储热(包括显热储热、潜热储热、热化学吸附储热和热化学反应储热等)、电能储能(包括超导磁储能和超级电容器储能)、电化学储能(包括锂离子电池、液流电池、钠离子电池、高温钠硫电池、铅酸电池及其他前沿电池储能等)、化学储能(包括氢储能、碳氢燃料储能、氨储能)等各类储能的工作原理、关键技术、应用现状与前景。另外,还对电力储能构成及建模、技术与经济性比较、应用场景分析、可行性应用评估方法等进行了详细阐述。 本书可供能源电力行业主管部门、储能技术研究科研人员、电力行业工程技术人员学习参考,也可作为高等院校相关专业师生阅读使用的参考书。

内容简介

“3060”双碳战略目标,事关中华民族永续发展和构建人类命运共同体。建立在能源转型基础上的新型能源体系(包括新型电力系统)是实现“3060”的基础。储能是支撑新型能源体系的重要技术和基础装备,是确保能源顺利转型、如期实现碳达峰碳中和目标的关键。在能源转型之路上,储能不仅对于传统电力系统性能提升、污染物及温室气体减量排放有着重要作用,而且对于构建以新能源为主体的新型电力系统更可发挥关键作用(如可有效应对风光等新能源的波动性、间歇性,避免电力系统弃风弃光,提升电力系统灵活性、可靠性、安全性)。
本书内容翔实丰富,覆盖了各类储能类型(包括机械式、热能式、电化学式、电能式、化学式)的发展历史、工作原理、功能及特点、技术应用、发展动态及趋势,介绍了具有发展潜力的新兴储热技术,兼顾理论和工程,力争反映国际储能领域科研和工程应用*z新进展。

目录

序言一 序言二 序言三 前言 1 绪论 01 1.1 储能概述 1.2 储能发展历程 1.2.1 自然储能与能源革命 1.2.2 电力系统储能 1.3 储能技术分类 1.3.1 按储能所存储能量形式或机理分类 1.3.2 按储能释能持续时间长短分类 1.3.3 其他分类法 1.4 储能在电力系统中的作用 1.4.1 大宗能源服务 1.4.2 辅助服务 1.4.3 输电网基础设施服务 1.4.4 配电网基础设施服务 1.4.5 用户侧能量管理服务 1.4.6 组合服务 1.5 储能技术发展现状及趋势 参考文献 2 储能基础知识 2.1 工程物理学基础 2.1.1 能量和功率 2.1.2 热力学**定律与总能 2.1.3 热力学第二定律与熵 2.1.5 2.2 储能系统评价指标体系 2.3 储能常用术语及定义 2.3.1 储能电站(系统)及其类别 2.3.2 电力储能系统及装置 2.3.3 储能系统技术规范 2.3.4 储能系统运行及维护 参考文献 3 机械储能技术 3.1 抽水蓄能 3.1.1 概述 3.1.2 抽水蓄能电站工作原理 3.1.3 抽水蓄能电站与机组种类及特点 3.1.4 抽水蓄能功能及应用 3.1.5 抽水蓄能技术发展 3.2 压缩空气储能 3.2.1 概述 3.2.2 压缩空气储能工作原理及特点 3.2.3 压缩空气储能分类及特点 3.2.4 关键设备 3.2.5 压缩空气储能应用 3.2.6 压缩空气储能发展趋势 3.3 液态空气储能 3.3.1 概述 3.3.2 液态空气储能电站工作原理 3.3.3 液态空气储能电站特点 3.3.4 液态空气储能工程应用 3.3.5 液态空气储能技术发展趋势 3.4 飞轮储能 3.4.1 概述 3.4.2 飞轮储能工作原理 3.4.3 飞轮储能分类及特点 3.4.4 飞轮储能工程应用 3.4.5 飞轮储能技术发展趋势 ···································································146 3.5 二氧化碳储能 3.5.1 概述 3.5.2 二氧化碳储能工作原理 ···································································147 3.5.3 二氧化碳储能类别及特点 ·······························································148 3.5.4 二氧化碳储能工程示范 ···································································155 3.5.5 二氧化碳储能技术发展趋势····························································157 3.6 重力储能 3.6.1 概述 3.6.2 重力储能工作原理 3.6.3 重力储能主要技术类别及工程应用 ················································159 3.6.4 重力储能技术发展趋势 ···································································167 参考文献 4 储热技术 176 4.1 概述 4.2 概念、分类及机理 4.2.1 热能与热量 4.2.2 储热系统 4.2.3 储热技术分类 4.2.4 储热技术机理 4.3 显热储热技术 4.3.1 概述 4.3.2 显热储热材料及选择 4.3.3 显热储热容器 4.4 潜热储热技术 4.4.1 概述 4.4.2 潜热储热材料(相变材料)及选择 ················································201 4.4.3 相变材料复合与强化换热 ·······························································211 4.4.4 潜热储/换热容器 4.5 热化学储热技术 4.5.1 概述 4.5.2 热化学吸附储热 4.5.3 热化学反应储热 4.6 储热技术应用 4.6.1 热能至电能方面的应用 ·································································· 228 4.6.2 电能至热能方面的应用 ·································································· 236 4.6.3 热能至热能方面的应用 ·································································· 239 4.6.4 热量至蒸汽方面的应用 ·································································· 240 4.7 储热技术发展 4.7.1 显热储热技术发展 4.7.2 潜热储热技术发展 4.7.3 热化学储热技术发展 4.7.4 复合储热及其他技术发展······························································· 249 参考文献 5 电能储能技术 254 5.1 超导磁储能 5.1.1 超导磁储能基本原理 5.1.2 超导磁储能技术特点 5.1.3 超导磁储能系统构成和关键技术 ··················································· 257 5.1.4 超导磁储能技术应用及展望··························································· 259 5.2 超级电容器储能 5.2.1 超级电容器基本原理 5.2.2 超级电容器技术特点 5.2.3 超级电容器技术应用现状及展望 ··················································· 266 参考文献 6 电化学储能技术 268 6.1 概述 6.2 锂离子电池 6.2.1 锂离子电池基本原理 6.2.2 锂离子电池技术特点 6.2.3 锂离子电池充放电特性及电池模型 ················································272 6.2.4 锂离子电池储能系统集成 ·······························································277 6.2.5 锂离子电池安全技术 6.2.6 锂离子电池应用现状及展望····························································284 6.3 液流电池 6.3.1 液流电池基本原理 6.3.2 液流电池技术特 6.3.3 液流电池储能系统 6.3.4 液流电池应用现状及展望 ·······························································289 6.4 钠离子电池 6.4.1 钠离子电池基本原理 6.4.2 钠离子电池技术特点 6.4.3 钠离子电池应用现状及展望····························································291 6.5 高温钠硫电池 6.5.1 高温钠硫电池基本原理 ···································································292 6.5.2 高温钠硫电池技术特点 ···································································292 6.5.3 高温钠硫电池应用现状及展望························································293 6.6 铅酸电池 6.6.1 铅酸电池基本原理 6.6.2 铅酸电池技术特点 6.6.3 铅酸电池应用现状及展望 6.7 电化学储能技术展望 参考文献 7 化学储能技术 7.1 氢储能 7.1.1 概述 7.1.2 制氢环节 7.1.3 储氢环节 7.1.4 输氢环节 7.1.5 氢能发电环节 7.1.6 氢储能技术应用 7.1.7 氢储能技术发展趋势 7.2 碳氢燃料储能 7.2.1 基本原理、特点及分类 ·································································· 326 7.2.2 碳氢燃料储能应用 7.2.3 碳氢燃料储能技术发展趋势··························································· 328 7.3 氨储能 7.3.1 基本原理、特点及分类 ·································································· 328 7.3.2 氨储能应用 7.3.3 氨储能技术发展趋势 ······································································ 330 参考文献 8 储能技术应用 334 8.1 概述 8.2 电力储能在系统中的地位及作用 ······························································ 339 8.3 电力储能系统构成及建模 8.3.1 电力储能系统构成 8.3.2 电力储能系统建模 8.4 电力储能系统的技术与经济性比较··························································· 348 8.4.1 电力储能系统技术性能比较··························································· 348 8.4.2 电力储能系统经济性比较······························································· 353 8.5 储能在电力系统中的应用场景 ·································································· 364 8.5.1 概述 8.5.2 储能在电力系统中的应用分类 ······················································· 366 8.5.3 储能在电力系统中的应用场景分析 ··············································· 367 8.6 储能应用评估 8.6.1 概述 8.6.2 储能项目价值和可行性评估方法 ··················································· 391 参考文献
展开全部

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航