暂无评论
图文详情
- ISBN:9787302650010
- 装帧:精装
- 册数:暂无
- 重量:暂无
- 开本:其他
- 页数:88
- 出版时间:2023-12-01
- 条形码:9787302650010 ; 978-7-302-65001-0
本书特色
本书作者曾获国际统计学会2021年简·丁伯根奖一等奖。
内容简介
时间序列模型广泛应用于计量经济学、金融学、生物统计学、工业计量学等领域。本书主要研究了复杂时间序列的理论性质和实际应用,包括对时间序列的分布函数、函数型时间序列,以及局部平稳时间序列多步向前预测区间的统计推断。本书可作为统计学、数据科学等相关专业本科生或研究生的选修课教材,也可作为统计 学科研人员、企业管理人员和国家行政机关工作人员学习预测方法的参考用书。
目录
第1章 引言 1
1.1 非参数统计方法 1
1.2 时间序列的分布函数 2
1.3 函数型时间序列 4
1.4 时间序列的预测区间 6
1.5 内容和结构 8
第2章 时间序列分布函数的同时置信带 10
2.1 主要结果 13
2.2 实施方法 15
2.3 数值模拟 16
2.3.1 基本数值模拟 16
2.3.2 与参数型同时置信带的比较 20
2.4 实际数据分析 24
2.5 证明 25
2.5.1 预备引理 26
2.5.2 定理2.1的证明 27
2.5.3 定理2.2所用引理及证明 28
第3章 函数型时间序列的统计推断 33
3.1 B样条估计量及其渐近理论 35
3.2 分解 38
3.3 实施方法 40
3.3.1 节点数选择 40
3.3.2 协方差估计 40
3.3.3 分位数估计 41
3.4 数值模拟 41
3.5 实际数据分析 44
3.6 证明 46
3.6.1 预备引理 46
3.6.2 定理3.1的证明 56
3.6.3 定理3.2的证明 59
第4章 局部平稳时间序列的多步向前预测区间 61
4.1 预测区间的构造方法 62
4.1.1 估计趋势函数 62
4.1.2 估计方差函数 63
4.1.3 自回归系数估计 63
4.1.4 建立的预测区间 63
4.2 实施方法 65
4.3 数值模拟 66
4.4 实证分析 73
4.4.1 探索性数据分析 73
4.4.2 基于季节性ARIMA模型预测空气污染物浓度 76
4.4.3 基于所提出的方法预测空气污染物浓度 79
第5章 工作总结与未来展望 84
参考文献 85
在学期间完成的相关学术成果 89
致谢 90
展开全部
作者简介
李杰,中国人民大学统计学院讲师(师资博士后)。2022年毕业于清华大学,获得统计学博士学位。主要研究方向为函数型数据分析、时间序列和非参数统计。曾获国际统计学会2021年简·丁伯根奖一等奖,国际数理统计协会2020年Hannan Graduate Student Travel Award,并在Statistica Sinica等期刊发表论文多篇。
本类五星书
本类畅销
-
铁道之旅:19世纪空间与时间的工业化
¥42.3¥59.0 -
桥梁史话
¥15.9¥37.0 -
金属材料及热处理
¥46.8¥72.0 -
中国建筑史
¥36.8¥75.0 -
测井井控技术手册(第二版)
¥68.0¥80.0 -
装配化工字组合梁设计
¥88.0¥160.0 -
高速线材轧机装备技术
¥33.3¥98.0 -
冶金建设工程
¥19.3¥35.0 -
城市桥梁工程施工与质量验收手册-(含光盘)
¥38.2¥78.0 -
棒料高速剪切机
¥11.4¥20.0 -
炼钢厂设计原理
¥16.0¥29.0 -
冶金企业废弃生产设备设施处理与利用
¥14.0¥36.0 -
毛皮加工及质量鉴定
¥1.7¥6.0 -
轧钢机械知识问答
¥21.0¥30.0 -
宣纸制造
¥6.0¥20.0 -
转炉炼钢实训
¥10.2¥30.0 -
实用高炉炼铁技术
¥16.0¥29.0 -
轧钢机械
¥27.0¥49.0 -
电气控制与PLC 第2版
¥51.8¥69.0 -
机器人驱动及控制
¥44.9¥59.8