×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
人工智能在生物信息学中的应用

人工智能在生物信息学中的应用

1星价 ¥148.5 (7.5折)
2星价¥148.5 定价¥198.0
暂无评论
图文详情
  • ISBN:9787030765482
  • 装帧:平装胶订
  • 册数:暂无
  • 重量:暂无
  • 开本:B5
  • 页数:464
  • 出版时间:2023-10-01
  • 条形码:9787030765482 ; 978-7-03-076548-2

内容简介

本书从多组学数据分析入手,描述了各种组学数据处理过程和生物组学相似性网络构建过程,介绍了相关人工智能算法的基本理论和基础知识,详细阐述了人工智能中的智能优化算法(Intelligentoptimizationalgorithm)、机器学习(Machinelearning)、深度学习(Deeplearning)等技术在基因组学(Genomics)、蛋白组学(Proteomics)、转录组学(Transcriptomics)、代谢组学(Metabolomics)、微生物组学(Microbiome)、表观遗传组学(Epigenomics)和药物发现(Drugdiscovery)中的应用,具体内容涉及蛋白质复合物挖掘,关键蛋白质识别,疾病基因预测,非编码RNA(尤其是circRNA)、微生物、代谢物和疾病的关联关系预测,M6A甲基化位点预测,以及药物和药物相互作用预测、药物重定位等。

目录

目录序前言第1章 绪论 11.1 引言 11.2 人工智能 11.2.1 人工智能的发展历史 11.2.2 人工智能的发展现状 31.3 大数据时代下的生物信息学 51.3.1 生物信息学 51.3.2 组学大数据的诞生 51.3.3 组学数据的类型与特点 101.3.4 多组学数据融合研究 111.4 人工智能在生物信息领域中的应用 121.4.1 人工智能与生物医药 121.4.2 人工智能在多组学数据分析中的应用 141.5 章节安排 181.6 小结 21参考文献 22第2章 生物多组学知识与数据库介绍 262.1 引言 262.2 组学基础知识 262.2.1 基因组学 262.2.2 蛋白质组学 272.2.3 转录组学 282.2.4 代谢组学 292.2.5 微生物组学 302.2.6 表观遗传组学 302.2.7 单细胞组学 312.2.8 时空组学 312.3 生物数据资源 322.3.1 生物信息学常用数据库 322.3.2 基因数据资源与常用工具 342.3.3 蛋白质数据资源 342.3.4 非编码RNA数据库 352.3.5 代谢物数据资源 382.3.6 微生物数据库 392.3.7 表观遗传组学数据库 402.3.8 单细胞组学数据库 412.3.9 时空组学数据库 422.3.10 疾病及疾病靶点数据库 432.3.11 药物数据库 432.4 小结 45参考文献 45第3章 生物网络特性与相似性 483.1 引言 483.2 生物网络概述 483.2.1 生物网络的构建 483.2.2 二分网络和异构网络 503.3 生物网络结点的度量方法 503.3.1 中心性度量方法 513.3.2 PageRank算法 523.4 相似性计算方法 533.4.1 基于拓扑结构的相似性 533.4.2 基于序列的相似性 543.4.3 基于表达数据的相似性 543.4.4 基于语义本体的相似性 553.4.5 基于关联关系的相似性 573.4.6 基于分子结构的相似性 603.4.7 基于网络传播的相似性 603.5 小结 61参考文献 62第4章 智能优化算法 644.1 引言 644.2 粒子群优化算法 644.2.1 粒子群优化算法仿生原理 644.2.2 基本粒子群优化算法描述 654.2.3 基本粒子群优化算法步骤 664.3 人工鱼群算法 664.3.1 人工鱼群算法仿生原理 664.3.2 人工鱼群算法描述 674.3.3 人工鱼群算法步骤 684.4 人工蜂群算法 684.4.1 人工蜂群算法仿生原理 684.4.2 人工蜂群算法描述 694.4.3 人工蜂群算法步骤 704.5 萤火虫算法 714.5.1 萤火虫算法仿生原理 714.5.2 萤火虫算法描述 714.5.3 萤火虫算法步骤 724.6 布谷鸟搜索算法 724.6.1 布谷鸟搜索算法仿生原理 724.6.2 布谷鸟搜索算法描述 744.6.3 布谷鸟搜索算法步骤 754.7 果蝇优化算法 754.7.1 果蝇优化算法仿生原理 754.7.2 果蝇优化算法描述 754.7.3 果蝇优化算法步骤 764.8 花授粉算法 774.8.1 花授粉算法仿生原理 774.8.2 花授粉算法描述 774.8.3 花授粉算法步骤 774.9 鸽群优化算法 784.9.1 鸽群优化算法仿生原理 784.9.2 鸽群优化算法描述 794.9.3 鸽群优化算法步骤 804.10 小结 80参考文献 81第5章 机器学习 855.1 引言 855.2 逻辑回归 865.2.1 逻辑回归原理 865.2.2 模型求解 875.3 支持向量机 885.3.1 支持向量机算法原理 885.3.2 核函数 895.4 决策树和随机森林 905.4.1 决策树 915.4.2 随机森林 925.5 神经网络 935.5.1 单层神经网络 945.5.2 多层神经网络 955.5.3 激活函数 965.6 基于划分的聚类算法 975.6.1 k-Means聚类算法 975.6.2 k-中心点聚类算法 995.7 基于密度的聚类算法 995.7.1 DBSCAN算法 995.7.2 OPTICS算法 1015.8 基于层次的聚类算法 1025.8.1 BIRCH算法 1025.8.2 变色龙聚类算法 1035.9 马尔可夫聚类算法 1045.10 评价指标 1065.10.1 数值评价指标 1075.10.2 图形评价指标 1095.10.3 交叉验证 1095.11 小结 110参考文献 110第6章 深度学习 1126.1 引言 1126.2 卷积神经网络 1136.2.1 卷积的概念 1146.2.2 卷积神经网络的基本结构 1156.2.3 卷积神经网络的求解 1166.3 循环神经网络 1176.3.1 循环神经网络的基本模型 1186.3.2 长短期记忆网络 1186.3.3 门控循环单元 1196.4 自编码器 1206.4.1 自编码器原理 1216.4.2 深度自编码器 1216.4.3 图自编码器 1226.5 图神经网络 1236.5.1 图神经网络原理 1236.5.2 图神经网络分类 1246.6 图卷积网络 1266.6.1 图卷积网络原理 1266.6.2 图卷积网络的理解 1276.7 图注意力网络 1286.7.1 注意力机制 1296.7.2 图注意力网络模型 1306.8 Word2vec词嵌入算法 1316.8.1 词嵌入 1326.8.2 连续词袋模型 1326.8.3 跳字模型 1326.9 小结 133参考文献 134第7章 PPI网络及蛋白质复合物挖掘方法 1367.1 引言 1367.2 蛋白质复合物 1367.2.1 蛋白质复合物作用 1367.2.2 蛋白质复合物结构 1377.3 基于群智能优化的蛋白质复合物挖掘 1397.3.1 基于布谷鸟优化算法的蛋白质复合物挖掘 1397.3.2 基于果蝇优化算法的蛋白质复合物挖掘 1447.3.3 基于萤火虫优化算法的蛋白质复合物挖掘 1487.4 基于网络拓扑结构的蛋白质复合物挖掘 1537.4.1 TP-WDPIN算法原理 1537.4.2 TP-WDPIN算法流程 1557.4.3 实验结果与分析 1567.5 基于密度聚类算法的蛋白质复合物挖掘 1597.5.1 基于DBSCAN算法的蛋白质复合物挖掘 1597.5.2 基于OPTICS算法的蛋白质复合物挖掘 1627.6 基于马尔可夫聚类算法的蛋白质复合物挖掘 1657.6.1 F-MCL算法原理 1657.6.2 F-MCL算法流程 1667.6.3 实验结果与分析 1677.7 基于商空间的蛋白质复合物挖掘 1677.7.1 ONCQS算法原理 1687.7.2 ONCQS算法流程 1717.7.3 实验结果与分析 1727.8 小结 174参考文献 175第8章 关键蛋白质识别方法 1788.1 引言 1788.2 基于多源异构数据融合的关键蛋白质识别 1788.2.1 多源异构数据介绍 1808.2.2 基于基因表达、亚细胞定位和PPI数据的关键蛋白质识别 1818.3 基于二阶邻域与信息熵的关键蛋白质识别 1848.3.1 NIE算法原理 1858.3.2 NIE算法流程 1878.3.3 实验结果与分析 1888.4 基于人工鱼群算法的关键蛋白质识别 1908.4.1 AFSO_EP算法原理 1908.4.2 AFSO_EP算法流程 1938.4.3 实验结果与分析 1938.5 基于花授粉算法的关键蛋白质识别 1958.5.1 FPE算法原理 1968.5.2 FPE算法流程 1988.5.3 实验结果与分析 1988.6 小结 201参考文献 201第9章 疾病基因预测 2049.1 引言 2049.2 基于二步随机游走算法的癌症基因预测 2049.2.1 构建异构网络 2059.2.2 TRWR-MB算法预测 2059.2.3 实验结果与分析 2089.3 基于逻辑回归算法的疾病基因预测 2099.3.1 网络重构 2099.3.2 LR-RPN算法预测 2119.3.3 实验结果与分析 2139.4 基于鸽群优化算法的疾病基因预测 2159.4.1 问题定义与描述 2159.4.2 PDG-PIO算法预测 2179.4.3 实验结果与分析 2189.5 基于网络信息损失模型的疾病基因预测 2219.5.1 网络信息损失模型 2219.5.2 异构网络传播算法 2239.5.3 InLPCH算法预测 2249.5.4 实验结果与分析 2259.6 小结 230参考文献 230第10章 非编码RNA与疾病关联关系预测 23310.1 引言 23310.2 基于变分自编码器的miRNA与疾病关联关系预测 23310.2.1 基于VGAE的非线性特征表示 23310.2.2 基于非负矩阵分解的线性特征表示 23510.2.3 VGAMF算法预测 23510.2.4 实验结果与分析 23510.3 基于矩阵分解的lncRNA与疾病关联关系预测 23710.3.1 非负矩阵分解算法 23710.3.2 TDNMF算法预测 23810.3.3 实验结果与分析 23910.4 基于卷积神经网络的circRNA与疾病关联关系预测 24210.4.1 相似性特征融合 24310.4.2 MSFCNN算法预测 24510.4.3 实验结果与分析 24710.5 基于图注意力网络的circRNA与疾病关联关系预测 24810.5.1 相似性融合 24810.5.2 GATCDA算法预测 249
展开全部

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航