- ISBN:9787302653561
- 装帧:平装-胶订
- 册数:暂无
- 重量:暂无
- 开本:其他
- 页数:290
- 出版时间:2024-02-01
- 条形码:9787302653561 ; 978-7-302-65356-1
本书特色
理论与实践并重、站在工程与科技的前沿 ;
提供书中全部程序源代码,可快速进阶到实用阶段 ;
由浅入深,理论结合实际,案例丰富实用 ;
取材科学、结构严谨、实用性突出 。
内容简介
本书以MATLAB R2021为平台,以实际应用为背景,通过叙述+函数+经典应用相结合的形式,深入浅出地介绍了MATLAB在人工智能中的经典应用相关知识。全书共11章,主要内容包括MATLAB环境与操作、数据分析实战、科学计算实战、数据建模实战、统计性数据分析实战、机器学习算法实战、深度学习算法实战、控制系统分析与设计实战、神经网络信息处理实战、**化方法实战、智能算法分析与实现实战。通过本书的学习,读者在领略到MATLAB简捷的同时将感受到利用MATLAB实现智能数据应用的领域广泛,功能强大。 本书可作为高等学校相关专业本科生和研究生的教学用书,也可作为相关领域科研人员、学者、工程技术人员的参考用书。
目录
下载资源 第1章MATLAB环境与操作 1.1MATLAB概述 1.1.1MATLAB启动与退出 1.1.2MATLAB帮助系统 1.2数据类型 1.2.1常量与变量 1.2.2数值类型 1.2.3字符串 1.2.4矩阵的数组 1.3控制语句 1.3.1循环结构 1.3.2选择结构 1.3.3程序流程控制 1.4绘图 第2章数据分析实战 2.1数据的预处理 2.2数据汇总 2.3数据建模 2.3.1多项式回归 2.3.2一般线性回归 2.4数据插值 2.4.1网格和散点数据 2.4.2创建网格数据 2.4.3基于网格的插值 2.4.4interp系列函数的插值 2.4.5griddedInterpolant类插值 2.4.6内插散点数据 第3章科学计算实战 3.1数值积分和微分方程 3.1.1数值积分和微分方程概述 3.1.2数值微积分的应用 3.2常微分方程 3.2.1ODE求解器 3.2.2边界值问题 3.2.3时滞微分方程 3.2.4偏微分方程 3.3傅里叶变换与滤波 3.3.1傅里叶变换 3.3.2二维傅里叶变换 3.3.3滤波数据 第4章数据建模实战 4.1数据降维 4.1.1PCA概述 4.1.2PCA的降维应用 4.2一元回归 4.2.1一元线性回归 4.2.2一元非线性回归 4.3多元线性回归 4.3.1多元线性回归概述 4.3.2多元线性回归的应用 4.4逐步回归 4.4.1逐步回归的概念 4.4.2逐步型选元法 4.4.3逐步回归的应用 4.5Logistic回归 4.5.1Logistic回归概述 4.5.2Logistic回归的应用 第5章统计性数据分析实战 5.1统计量和统计图 5.1.1描述性统计量 5.1.2常用的统计量函数 5.1.3统计可视化 5.2概率分布 5.2.1离散概率分布 5.2.2连续分布 5.3假设检验 5.3.1KS检验 5.3.2t检验 5.3.3双样本t检验 5.4方差分析 5.4.1方差的基本原理 5.4.2单因素方差分析 5.4.3双因素方差分析 5.4.4多因素方差分析 第6章机器学习算法实战 6.1机器学习概述 6.1.1机器学习的分类 6.1.2机器学习步骤 6.1.3分类方法 6.2K*近邻分类 6.2.1K*近邻概述 6.2.2KNN分类的应用 6.3判别分析 6.3.1判别分析的基本原理 6.3.2判别函数 6.3.3判别方法 6.3.4判别分析的应用 6.4贝叶斯分类 6.4.1贝叶斯算法 6.4.2朴素贝叶斯算法的原理 6.4.3朴素贝叶斯算法的优缺点 6.4.4朴素贝叶斯的应用 6.5支持向量机 6.5.1支持向量机概述 6.5.2使用支持向量机 6.5.3支持向量机的应用 第7章深度学习算法实战 7.1迁移学习 7.1.1迁移学习概述 7.1.2迁移学习的应用 7.2图像的深度学习 7.3时间序列在深度学习中的应用 7.3.1时间序列概述 7.3.2LSTM网络 7.3.3序列分类的应用 7.4深度学习进行时序预测 7.5AlexNet卷积网络 7.5.1ReLU激活函数 7.5.2层叠池化 7.5.3局部相应归一化 7.5.4AlexNet结构 7.5.5AlexNet生成Deep Dream图像 7.6堆叠自编码器 7.6.1自编码网络的结构 7.6.2自编码器进行图像分类 第8章控制系统分析与设计实战 8.1自动控制概述 8.1.1控制仿真概述 8.1.2计算机仿真的步骤 8.2控制系统的数学建模 8.3判定系统稳定性 8.3.1直接判定 8.3.2图形化判定 8.4时域分析 8.4.1动态性能指标 8.4.2稳定性指标 8.4.3时域响应的典型函数应用 8.5根轨迹 8.5.1根轨迹图 8.5.2根轨迹法分析 8.6频域分析 8.6.1频率特性 8.6.2频域分析的应用 8.7控制系统综合应用 第9章神经网络信息处理实战 9.1神经网络概述 9.1.1神经元结构 9.1.2人工神经元模型 9.1.3人工神经网络的特点 9.2感知器 9.2.1单层感知器 9.2.2多层感知器 9.2.3感知器在分类中的应用 9.3径向基函数网络 9.3.1RBF神经元模型 9.3.2径向基的逼近 9.3.3广义回归神经网络 9.4BP神经网络 9.5学习向量量化 9.5.1LVQ网络结构 9.5.2LVQ学习算法 9.5.3LVQ网络的应用 9.6自组织特征映射网络 9.6.1SOM网络拓扑结构 9.6.2自组织映射在鸢尾花聚类中的应用 第10章*优化方法实战 10.1*优化概述 10.1.1*优化问题 10.1.2*优化算法 10.2线性规划 10.2.1线性规划的模型 10.2.2线性规划标准型 10.2.3线性规划的应用 10.3非线性规划 10.3.1非线性规划的数学模型 10.3.2一维非线性*优实现 10.3.3多维非线性*优实现 10.4整数规划 10.4.1整数规划的分类 10.4.2求解法分类的应用 10.5二次规划 10.5.1二次规划的模型 10.5.2二次规划的实现 10.6多目标规划 10.6.1多目标规划的数学模型 10.6.2多目标规划的实现 10.7*大*小规划 10.7.1*大*小规划模型 10.7.2*大*小规划的实现 10.8动态规划 10.8.1动态规划的基本思想 10.8.2动态规划的线路图 10.8.3动态规划的实现 10.9图与网络优化 10.9.1图的基本概念 10.9.2*短路径问题 第11章智能算法分析与实现实战 11.1遗传算法 11.1.1遗传算法的特点 11.1.2遗传算法的术语 11.1.3遗传算法的运算过程 11.1.4遗传算法的实现 11.2模拟退火算法 11.2.1模拟退火的组成 11.2.2模拟退火的思想 11.2.3模拟退火的寻优步骤 11.2.4模拟退火的实现 11.2.5模拟退火的实际应用 11.3粒子群算法 11.3.1粒子群算法概述 11.3.2粒子群算法的特点 11.3.3粒子群的算法及实现 11.4免疫算法 11.4.1免疫算法的原理 11.4.2免疫算法步骤和流程 11.4.3免疫算法的实现 11.5蚁群算法 11.5.1蚁群的基本算法 11.5.2蚁群算法的实现 11.6小波分析 11.6.1傅里叶变换 11.6.2小波分析概述 11.6.3小波变换的实现 参考文献
-
有限与无限的游戏:一个哲学家眼中的竞技世界
¥37.4¥68.0 -
硅谷之火-人与计算机的未来
¥14.3¥39.8 -
全图解零基础word excel ppt 应用教程
¥12.0¥48.0 -
机器学习
¥59.4¥108.0 -
深度学习的数学
¥43.5¥69.0 -
智能硬件项目教程:基于ARDUINO(第2版)
¥37.7¥65.0 -
元启发式算法与背包问题研究
¥38.2¥49.0 -
AI虚拟数字人:商业模式+形象创建+视频直播+案例应用
¥62.9¥89.8 -
UNIX环境高级编程(第3版)
¥164.9¥229.0 -
剪映AI
¥52.8¥88.0 -
深度学习高手笔记 卷2:经典应用
¥90.9¥129.8 -
纹样之美:中国传统经典纹样速查手册
¥77.4¥109.0 -
UG NX 12.0数控编程
¥24.8¥45.0 -
MATLAB计算机视觉与深度学习实战(第2版)
¥90.9¥128.0 -
界面交互设计理论研究
¥30.8¥56.0 -
UN NX 12.0多轴数控编程案例教程
¥25.8¥38.0 -
微机组装与系统维护技术教程(第二版)
¥37.8¥43.0 -
Go 语言运维开发 : Kubernetes 项目实战
¥48.2¥79.0 -
明解C语言:实践篇
¥62.9¥89.8 -
Linux服务器架设实战(Linux典藏大系)
¥84.5¥119.0