×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
静电场与流场作用下细颗粒团聚、迁移与沉积动力学(英文版)

静电场与流场作用下细颗粒团聚、迁移与沉积动力学(英文版)

1星价 ¥69.3 (7.0折)
2星价¥69.3 定价¥99.0
暂无评论
图文详情
  • ISBN:9787302619543
  • 装帧:精装
  • 册数:暂无
  • 重量:暂无
  • 开本:其他
  • 页数:138
  • 出版时间:2024-05-01
  • 条形码:9787302619543 ; 978-7-302-61954-3

本书特色

本书入选“清华大学优秀博士学位论文丛书”系列,结合国家能源与环境重大需求,从多相流离散相动力学出发,进行基础理论研究。研究内容涵盖表面物理、静电学与流体力学等多学科知识,涉及国际流体力学界 particle-laden flow领域前沿与难点问题;研究成果不仅对细颗粒生成与控制具有重要指导意义,同时对大气云滴生成动力学、行星形成初期理论以及地表风沙运动科学具有重要借鉴意义。

内容简介

本书以静电场、流场等复杂多场作用下细颗粒团聚、迁移与沉积行为为研究对象,发展了粘附性微米颗粒接触相互作用及长程相互作用的快速算法(Fast DEM),并将该算法与直接数值模拟结合,揭示了微米颗粒在湍流场内的碰撞与团聚机理,构建了湍流团聚核函数;进一步结合Oseen 动力学算法,给出了荷电颗粒群电迁移率及形状演化与荷电强度、流体惯性之间的关联规律;*后,针对细颗粒在极板及纤维表面的沉积过程,明晰了沉积体结构及过滤效率与颗粒微观特性之间的关系。

目录

1 Introduction 1
1.1 Adhesive Particle Flow 1
1.2 Example Systems 2
1.3 Collision and Agglomeration of Particles in Turbulence 4
1.4 Migration of Microparticles in an Electrostatic Field 6
1.5 Deposition of Microparticles and Clogging Phenomenon 9
1.6 Discrete Element Methods for Adhesive Particles 12
1.7 A Road Map to Chaps. 2–6 13
References 14 2 A Fast Discrete Element Method for Adhesive Particles 17
2.1 Introduction 17
2.2 Discrete Element Method for Adhesive Particles 18
2.3 Critical Sticking Velocity for Two Colliding Particles 20
2.3.1 Temporal Evolution of the Collision Process 22
2.3.2 Prediction of the Critical Sticking Velocity 25
2.3.3 Effect of Particle Size 29
2.4 A Fast Adhesive DEM 31
2.4.1 Accelerating Adhesive DEM Using Reduced Stiffness 31
2.4.2 Modi?ed Models for Rolling and Sliding Resistances 34
2.5 Determination of Parameters in Adhesive DEM 36
2.5.1 An Inversion Procedure to Set Parameters in Adhesive DEM 36
2.5.2 Comparison Between Experimental and DEM Results 39
2.6 Test on Packing Problem 40
2.6.1 Packing Fraction and Coordination Number 43
2.6.2 Local Structure of Packings 45
2.6.3 Interparticle Overlaps and Normal Forces 46
2.7 Summary 48
References 49 3 Agglomeration of Microparticles in Homogenous Isotropic Turbulence 51
3.1 Introduction 51
3.2 Methods 52
3.2.1 Fluid Phase Calculation 52
3.2.2 Equation of Motion for Solid Particles 53
3.2.3 Multiple-time Step Framework 54
3.2.4 Simulation Conditions 55
3.2.5 Identi?cation of Collision, Rebound and Breakage Events 57
3.2.6 Smoluchowski’s Theory 59
3.3 Collision Rate, Agglomerate Size and Structure 60
3.4 Effect of Stokes Number 62
3.5 Exponential Scaling of Early-Stage Agglomerate Size 62
3.6 Agglomeration Kernel and Population Balance Modelling 64
3.7 Effect of Adhesion on Agglomeration 65
3.8 Effect of Adhesion on Breakage of Agglomerates 68
3.9 Formulation of the Breakage Rate 68
3.10 Agglomerate Size Dependence of the Breakage Rate 76
3.11 Role of Flow Structure 76
3.12 Conclusions 78
References 79 4 Migration of Cloud of Low-Reynolds-Number Particles with Coulombic and Hydrodynamic Interactions 81
4.1 Introduction 81
4.2 Formulation of Problem 81
4.3 Effect of Coulomb Repulsion on Cloud Shape 84
4.3.1 Cloud Shape 84
4.3.2 Effect of Fluid Inertia 87
4.3.3 Stability of the Cloud 88
4.4 Evolution of Particle Cloud Under Strong Repulsion 91
4.4.1 Scaling Analysis and Continuum Description 91
4.4.2 Prediction of Cloud Size and Migrating Velocity 93
4.4.3 Discussion 97
4.5 Summary 98
References 99 5 Deposition of Microparticles with Coulomb Repulsion 101
5.1 Introduction 101
5.2 Models and Methods 102
5.2.1 Simulation Conditions 102
5.2.2 Forces on Particles 103
5.2.3 Average-Field Calculation for Coulomb Interactions
in 2D Periodic System 103
5.3 Effects of Coulomb Interaction on Packing Structure 106
5.4 Scaling Analysis of the Interparticle Force 109
5.5 Governing Parameters for the Packing Structure 112
5.6 Phase Diagram 115
5.7 Summary 117
References 118 6 Deposition of Charged Micro-Particles on Fibers: Clogging Problem 119
6.1 Introduction 119
6.2 Models and Method 120
6.2.1 Simulation Conditions: Two Fiber System 120
6.2.2 Gas Phase Simulation 121
6.2.3 Solid-Phase: Discrete-Element Method (DEM) 122
6.2.4 Governing Parameters 123
6.3 Clogging/Non-clogging Transition 124
6.4 Measurement of Particle Capture Ef?ciency 127
6.4.1 Repulsion Effect: The Critical State 128
6.4.2 Structure Effect 130
6.5 Summary 133
References 134 7 Conclusions and Perspective 135
7.1 Conclusions 135
7.2 Future Work 137
References 138
展开全部

作者简介

陈晟,华中科技大学能源与动力学院副研究员。2019年毕业于清华大学,获动力工程及工程热物理博士学位,获2019年度清华大学优秀博士学位论文。研究方向包括燃烧污染物控制、多场耦合作用下颗粒动力学理论、太阳能光热利用与储能技术开发。在J. Fluid Mech.、Phys. Rev. E、Phys. Rev. Fluids、Chem. Eng. Sci. 等国际知名期刊上发表SCI论文13篇,授权发明专利1项。参与国家重点研发计划项目1项、973项目1项、国家自然科学基金1项。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航