×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
数据驱动的信息物理系统(英文版)

数据驱动的信息物理系统(英文版)

1星价 ¥104.3 (7.5折)
2星价¥104.3 定价¥139.0
暂无评论
图文详情
  • ISBN:9787302669388
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:其他
  • 页数:372
  • 出版时间:2024-08-01
  • 条形码:9787302669388 ; 978-7-302-66938-8

本书特色

全面覆盖信息物理系统及其应用,聚焦数据驱动的信息物理系统设计方法,探讨当前信息物理系统研究趋势和未来方向。

内容简介

"《数据驱动的信息物理系统(英文版)》聚焦于数据驱动CPS系统的原则、设计和实现,涵盖了数据采集、分析和建模、机器学习和人工智能、网络与分布式计算以及网络安全等主题。《数据驱动的信息物理系统(英文版)》全面介绍了开发数据驱动信息物理系统所使用的**进的技术和方法,以及它们在制造业、医疗保健、交通运输和能源等各个行业中的应用。 "

目录

Chapter 1 Introduction to Data-driven Cyber Physical Systems 1.1 What are cyber physical systems? 1.2 Data-driven approaches for CPS 1.3 Importance of DDCPS 1.4 Key challenges in DDCPS 1.5 Applications of DDCPS 1.6 Evolution of data-driven approaches in cyber physical systems 1.7 How can data be used to improve cyber physical systems? 1.8 Overview of the book References Chapter 2 Fundamentals of Data-driven Cyber Physical Systems 2.1 Definitions 2.1.1 Definitions of CPS 2.1.2 Definitions of DDCPS 2.2 Characteristics of DDCPS 2.2.1 Networked communication 2.2.2 Scalability 2.2.3 Heterogeneity 2.2.4 Interdisciplinary 2.2.5 Real-time processing 2.2.6 Real-time decision-making 2.3 Components of DDCPS 2.3.1 Sensing components 2.3.2 Computational components 2.3.3 Communication components 2.3.4 Control components 2.4 Examples of DDCPS in different industries 2.4.1 Smart grids 2.4.2 Agriculture 2.4.3 Healthcare 2.4.4 Intelligent transportation 2.4.5 Smart manufacturing 2.5 Challenges of DDCPS 2.5.1 Data storage 2.5.2 Integration 2.5.3 Communication 2.5.4 Cybersecurity 2.5.5 System stability 2.6 Summary References Chapter 3 Data Collection in Cyber Physical Systems 3.1 Sensors and auxiliary components 3.1.1 Type of sensor and auxiliary components 3.1.2 Factors for selecting sensors and auxiliary components 3.1.3 Typical scenarios for data collection 3.2 Types of data 3.2.1 One dimensional data 3.2.2 Image and video data 3.2.3 Other types of data 3.3 Real time and latency 3.3.1 Techniques for reducing latency 3.3.2 Key considerations of real time and latency 3.3.3 Evaluating the performance 3.4 Data quality and reliability issues 3.4.1 Data preprocessing techniques 3.4.2 Impact of data redundancy on reliability 3.4.3 Data validation techniques 3.5 Summary References Chapter 4 Data Storage and Management in Cyber Physical Systems 4.1 Types of data storage for DDCPS 4.1.1 An introduction to data storage in DDCPS 4.1.2 Explore data storage instances in the system 4.2 Data management and processing techniques 4.2.1 Database management techniques 4.2.2 Data processing techniques 4.3 Big data processing technology of DDCPS 4.3.1 Data process for storage and management 4.3.2 Storage for DDCPS 4.3.3 Management for DDCPS 4.3.4 Big data for DDCPS 4.4 Summary References Chapter 5 Data Integration and Fusion in Cyber Physical Systems 5.1 Data integration and fusion 5.1.1 CPS data characteristics 5.1.2 CPS data integration 5.1.3 CPS data fusion 5.1.4 Data integration and fusion framework 5.1.5 Data representation 5.2 Techniques for fusing data from multiple sources 5.2.1 Stage-based data fusion methods 5.2.2 Semantic meaning-based data fusion 5.2.3 Artificial intelligence-based data fusion 5.3 CPS data integration and fusion case studies 5.3.1 Cloud-integrated CPS for smart cities case study 5.3.2 Data fusion framework for smart healthcare case study 5.4 Challenges and future work opportunities 5.4.1 Integrated models challenges 5.4.2 CPS data fusion challenges 5.4.3 Future work opportunities 5.5 Summary References Chapter 6 Data-driven Modeling and Simulation in Cyber Physical Systems - ~ 6.1 Importance of modeling and simulation in cyber physical systems 6.1.1 Importance of complex system modeling for CPS 6.1.2 Importance of complex system simulation for CPS 6.1.3 Benefits of modeling and simulation in CPS 6.2 Data-driven modeling techniques 6.2.1 Introduction to data-driven modeling 6.2.2 Types of data-driven models used in CPS 6.2.3 Methods for model selection and validation 6.2.4 Examples of data-driven modeling in CPS applications 6.3 Simulation and testing of cyber physical systems using data-driven models 6.3.1 Introduction to data-driven simulation 6.3.2 Types of data-driven simulation used in CPS 6.3.3 Model validation and uncertainty quantification 6.3.4 Case studies of simulation and testing using data-driven models in CPS applications 6.4 Summary References Chapter 7 Fault Detection and Predictive Maintenance in Cyber Physical Systems 7.1 An overview of fault detection and maintenance 7.1.1 The development of CPS fault detection 7.1.2 The development of CPS maintenance 7.1.3 Future trends of fault detection and predictive maintenance 7.2 Data-driven approaches for fault detection and predictive maintenance 7.2.1 Data-driven fault detection approaches 7.2.2 Data-driven predictive maintenance approaches 7.2.3 Discussion of fault detection and predictive maintenance 7.3 Applications of fault detection and predictive maintenance 7.3.1 Application background of fault detection and predictive maintenance 7.3.2 Case studies of fault detection and predictive maintenance 7.3.3 Challenges in cases 7.4 Summary References Chapter 8 Cyberseeurity in Data-driven Cyber Physical System 8.1 Cyber attacks in data-driven CPS 8.1.1 Attacks at the perception layer 8.1.2 Attacks at the transmission layer 8.1.3 Attacks at the platform layer 8.1.4 Attacks at the application layer 8.2 Requirements of cybersecurity 8.2.1 Objective of cybersecurity 8.2.2 Hardware security 8.2.3 Software security 8.2.4 Network security 8.2.5 Data security 8.3 Importance of cybersecurity in data-driven CPS 8.3.1 Data integrity and accuracy 8.3.2 Privacy and confidentiality 8.3.3 System resilience and availability 8.3.4 Regulatory requirements 8.4 Challenges of cybersecurity in data-driven CPS 8.4.1 Data-driven techniques for attack detection and mitigation 8.4.2 Data trustworthiness and policy-based sharing 8.4.3 Risk-based security metrics 8.5 Data-driven techniques of cybersecurity in CPS 8.5.1 Data-driven attack detection and migitation 8.5.2 Data-driven data confidence assessment 8.5.3 Risk assessment metrics 8.6 Summary References Chapter 9 Future of Data-driven Cyber Physical Systems 9.1 Potential impacts 9.2 Emerging trends and technologies in DDCPS 9.3 Societal and ethical implications 9.4 Concluding remarks Acknowledgements
展开全部

作者简介

李方昱,北京工业大学教授,博士生导师,国家海外优青、国家重点研发计划青年科学家,长期致力于数据驱动的复杂系统模型构建与分析研究,主持国家重点研发计划项目、国家自然科学基金面上项目多项,在权威国际期刊上发表SCI论文90余篇,ESI高被引论文3篇,入选斯坦福全球前2%**科学家榜单。 伍小龙,北京工业大学副教授,硕士生导师。从事大数据分析、 人工神经网络设计、智能特征建模、 智能控制等方向的研究。曾获中国自动化学会优秀博士学位论文奖,中国自动化科技进步一等奖,中国发明协会创业奖×创新奖一等奖,曾在国内外期刊及会议上发表学术论文30余篇,参与撰写专著2本,现任中国自动化学会青年工作委员会委员,中国环境感知与保护自动化委员会委员。 韩红桂,北京工业大学教授,博士生导师,国家重点研发计划项目首席科学家、国家自然科学基金杰出青年科学基金项目获得者、国家自然科学基金优秀青年科学基金项目获得者、中国自动化学会青年科学家,长期从事复杂系统智能优化运行控制理论方法和关键技术的研究。现任“数字社区”工程研究中心主任、“计算智能与智能系统”北京市重点实验室主任等,兼任中国自动化学会环保自动化专业委员会秘书长、中国自动化学会过程控制专业委员会委员。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航