- ISBN:7506238187
- 装帧:简裝本
- 册数:暂无
- 重量:暂无
- 开本:32开
- 页数:352
- 出版时间:1998-08-01
- 条形码:9787506238182 ; 978-7-5062-3818-2
内容简介
片断:
Chapter5isdevotedtoestimationunderexactorstochasticlinearre-
strictions.ThecomparisonoftwobiasedestimatorsaccordingtotheMDE
criterionisbasedonrecenttheoremsofmatrixtheory.Theresultsarethe
outcomeofintensiveinternationalresearchoverthelasttenyearsandap-
pearhereforthefirsttimeinacoherentform.Thisconcernstheconcept
oftheweakr-unbiasednessaswell.
Chapter6containsthetheoryoftheoptimallinearpredictionand
gives,inadditiontoknownresults,aninsightintorecentstudiesabout
theMDEmatrixcomparisonofoptimalandclassicalpredictionsaccording
toalternativesuperioritycriteria.
Chapter7presentsideasandproceduresforstudyingtheeffectofsingle
datarowsontheestimationof.Here,differentmeasuresforrevealing
outliersorinfluentialpoints.includinggraphicalmethods,areincorporated.
Someexamplesillustratethis.
Chapter8dealswithmissingdatainthedesignmatrixX.Afterintroduc-
ingthegeneralproblemsanddefiningthevariousmissingdatamechanisms
accordingtoRubin,wedemonstrate''adjustmentbyfollow-upinterviews"
forlong-termstudieswithdropout.Fortheregressionmodelthemethodof
imputationisdescribed,inadditiontotheanalysisofthelossofefficiency
incaseofareductiontothecompletelyobservedsubmodel.Themethod
ofweightedmixedestimatesispresentedforthefirsttimeinatextbook
onlinearmodels.
Chapter9containsrecentcontributionstorobuststatisticalinference
basedonM-estimation.
Chapter10describesthemodelextensionsforcategoricalresponseand
explanatoryvariables.Here.thebinaryresponseandtheloglinearmodelare
ofspecialinterest.Themodelchoiceisdemonstratedbymeansofexamples.
Categoricalregressionisintegratedintothetheoryofgeneralizedlinear
models.
Anindependentchapter(AppendixA)onmatrixalgebrasummarizes
standardtheorems(includingproofs)thatareofinterestforthebookit-
self,butalsoforlinearstatisticsingeneral.Ofspecialinterestarethe
theoremsaboutdecompositionofmatrices(A.30-A.34),definitematrices
(A.35-A.59),thegeneralizedinverse,andespeciallyaboutthedefiniteness
ofdifferencesbetweenmatrices(TheoremA.7l;cf.A.74-A.78).
Thebookoffersanup-to-dateandcomprehensiveaccountofthetheory
andapplicationsoflinearmodels.
TablesfortheX-and.F-distributionsareprovidedinAppendixB.
2
LinearModels
2.1RegressionModelsinEconometrics
Themethodologyofregressionanalysis,oneoftheclassicaltechniquesof
mathematicalstatistics,isanessentialpartofthemoderneconometric
theory.
Econometricscombineselementsofeconomics,mathematicaleconomics,
andmathematicalstatistics.Thestatisticalmethodsusedineconometrics
areorientedtowardspecificeconometricproblemsandhencearehighly
specialized.Ineconomiclawsstochasticvariablesplayadistinctiverole.
Henceeconometricmodels,adaptedtotheeconomicreality,havetobe
builtonappropriatehypothesesaboutdistributionpropertiesoftheran-
domvariables.Thespecificationofsuchhypothesesisoneofthemaintasks
ofeconometricmodelling.Forthemodellingofaneconomic(orascientific)
relation,weassumethatthisrelationhasarelativeconstancyoverasuffi-
cientlylongperiodoftime(thatis,overasufficientlengthofobservation
period),sinceotherwiseitsgeneralvaliditywouldnotbeascertainable.
Wedistinguishbetweentwocharacteristicsofastructuralrelationship,the
variablesandtheparameters.Thevariables,whichwewillclassifylateron,
arethosecharacteristicswhosevaluesintheobservationperiodcanvary.
Thosecharacteristicsthatdonotvarycanberegardedasthestructureof
therelation.Thestructureconsistsofthefunctionalformoftherelation,
includingtherelationbetweenthemainvariables,thetypeofprobabil-
itydistributionoftherandomvariables,andtheparametersofthemodei
equations.
目录
Contents
Preface
Introduction
LinearModels
2.1RegressionModelsinEconometrics
2.2EconometricModels
2.3TheReducedForm
2.4TheMultivariateRegressionModel
2.5TheClassicalMultivariateLinearRegressionModel
2.6TheGeneralizedLinearRegressionModel
TheLinearRegressionModel
3.1TheLinearModel
3.2ThePrincipleofOrdinaryLeastSquares(OLS)
3.3GeometricPropertiesofOLS
3.4BestLinearUnbiasedEstimation
3.4.1BasicTheorems
3.4.2LinearEstimators
3.4.3MeanDispersionError
3.5Estimation(Prediction)oftheErrorTermeand
3.6ClassicalRegressionunderNormalErrors
3.7TestingLinearHypotheses
3.8AnalysisofVarianceandGoodnessofFit
3.8.1BivariateRegression
3.8.2MultipleRegression
3.8.3AComplexExample
3.8.4GraphicalPresentation
3.9TheCanonicalForm
3.10MethodsforDealingwithMuiticollinearity
3.10.1PrincipalComponentsRegression
3.10.2RidgeEstimation
3.10.3ShrinkageEstimates
3.10.4PartialLeastSquares
3.11ProjectionPursuitRegression
3.12TotalLeastSquares
3.13MinimaxEstimation
3.13.1InequaiityRestrictions
3.13.2TheMinimaxPrinciple
3.14CensoredRegression
3.14.1Introduction
3.14.2LADEstimatorsandAsymptoticNormality
3.14.3TestsofLinearHypotheses
TheGeneralizedLinearRegressionModel
4.1OptimalLinearEstimationof
4.2TheAitkenEstimator
4.3MisspecificationoftheDispersionMatrix
4.4HeteroscedasticityandAutoregression
ExactandStochasticLinearRestrictions
5.1UseofPriorInformation
5.2TheRestrictedLeast-SquaresEstimator
5.3StepwiseInclusionofExactLinearRestrictions
5.4BiasedLinearRestrictionsandMDEComparisonwiththe
OLSE
5.5MDEMatrixComparisonsofTwoBiasedEstimators
5.6MDEMatrixComparisonofTwoLinearBiasedEstimators
5.7MDEComparisonofTwo(Biased)RestrictedEstimators
5.7.1SpecialCase:StepwiseBiasedRestrictions
5.8StochasticLinearRestrictions
5.8.1MixedEstimator
5.8.2AssumptionsabouttheDispersionMatrix
5.8.3BiasedStochasticRestrictions
5.9WeakenedLinearRestrictions
5.9.1Weakly(R,r)-Unbiasedness
5.9.2OptimalWeakly(R.r)-UnbiasedEstimators
5.9.3FeasibleEstimators--OptimalSubstitutionofin
5.9.4RLSEInsteadoftheMixedEstimator
PredictionProblemsintheGeneralizedRegressionModel.
6.1Introduction
6.2SomeSimpleLinearModels1
6.3ThePredictionModel
6.4OptimalHeterogeneousPrediction
6.5OptimalHomogeneousPrediction
6.6MDEMatrixComparisonsbetweenOptimalandClassical
Predictors
6.6.1ComparisonofClassicalandOptimalPredictionwith
Respecttothey.-Superiority
6.6.2ComparisonofClassicalandOptimalPredictorswith
RespecttotheX.-Superiorityl
6.7PredictionRegionsl
SensitivityAnalysis
7.1Introduction
7.2PredictionMatrix
7.3TheEffectofaSingleObservationontheEstimationofPa-
rameters
7.3.1MeasuresBasedonResiduals
7.3.2AlgebraicConsequencesofOmittinganObservation
7.3.3DetectionofOutliers
7.4DiagnosticPlotsforTestingtheModelAssumptions
7.5MeasuresBasedontheConfidenceEllipsoid
7.6PartialRegressionPlots
AnalysisofIncompleteDataSets
8.1StatisticalAnalysiswithMissingData
8.2MissingDataintheResponse
8.2.1Least-SquaresAnalysisforCompleteData
8.2.2Least-SquaresAnalysisforFilled-upData
8.2.3AnalysisofCovariance-Bartlett'sMethod
8.3MissingValuesintheX-Matrix
8.3.1MissingVaiuesandLossinEfficiency
8.3.2StandardMethodsforIncompleteX-Matrices
8.4MaximumLikelihoodEstimatesofMissingValues
8.5WeightedMixedRegression
8.5.1MinimizmgtheMDEP
8.5.2TheTwo-StageWMRE
RobustRegression
9.1Introduction
9.2LeastAbsoluteDeviationEstimators-UnivariateCase
9.3M-Estimates:UnivariateCase.
9.4AsymptoticDistributionsofLADEstimators
9.4.1UnivariateCase
9.4.2MultivariateCase
9.5GeneralM-Estimates
9.6TestofSignificance
10ModelsforBinaryResponseVariables
10.1GeneralizedLinearModels
10.2ContingencyTables
10.2.1Introduction
10.2.2WaysofComparmgProportions
10.2.3SamplinginTwo-WayContingencyTables
10.2.4LikelihoodFunctionandMaximumLikelihoodEsti-
mates
10.2.5TestingtheGoodnessofFit
10.3GLMforBinaryResponse
10.3.1LogitModels
10.3.2LoglinearModels
10.3.3LogisticRegression
10.3.4TestingtheModel
10.3.5DistributionFunctionsasLinkFunction
10.4LogitModelsforCategoricalData
10.5GoodnessofFit-Likelihood-RatioTest
10.6LoglinearModelsforCategoricalVariables
10.6.1Two-WayContingencyTables
10.6.2Three-WayContingencyTables
10.7TheSpecialCaseofBinaryResponse
10.8CodingofCategoricalExplanatoryVariables
10.8.1DummyandEffectCoding
10.8.2CodingofResponseModels
10.8.3CodingofModelsfortheHazardRate
AMatrixAlgebra
A.lIntroduction
A.2TraceofaMatrix
A.3DeterminantofaMatrix
A.4InverseofaMatrix
A.5OrthogonalMatrices
A.6RankofaMatrix
A.7RangeandNullSpace
A.8EigenvaluesandEigenvectors
A.9DecompositionofMatrices
A.10DefiniteMatricesandQuadraticForms
A.llIdempotentMatrices
A.l2GeneralizedInverse
A.13Projectors
A.14FunctionsofNormallyDistributedVariables
A.15DifferentiationofScalarFunctionsofMatrices
A.16MiscellaneousResults,StochasticConvergence
Tables
References
Index
-
昆虫的生存之道
¥12.4¥38.0 -
13次时空穿梭之旅
¥18.7¥59.0 -
声音简史
¥19.2¥52.0 -
技术史入门
¥15.4¥48.0 -
勒维特之星-大发现系列丛书
¥5.0¥16.0 -
智慧宫029梦游者:西方宇宙观念的变迁
¥75.5¥128.0 -
发现之旅数的王国——世界共通的语言
¥41.8¥68.0 -
造就适者——DNA和进化的有力证据
¥20.4¥55.0 -
舟山群岛植物图志
¥20.1¥59.0 -
递归求解
¥10.9¥28.0 -
300种美鱼彩图馆
¥15.3¥39.8 -
博物人生-(第2版)
¥29.1¥78.0 -
天文学卷-异想天开-古今中外天文简史-《中国大百科全书》普及版
¥6.1¥19.0 -
现代物理学的概念和理论
¥23.1¥68.0 -
世纪幽灵-走近量子纠缠
¥10.9¥28.0 -
现代科技中的天文学
¥5.5¥13.0 -
控制论的发生与传播研究
¥6.3¥15.0 -
化学晚会
¥7.0¥20.0 -
实验设计及工程应用
¥9.5¥25.0 -
新科学时代的思考
¥46.2¥78.0