暂无评论
图文详情
- ISBN:9787510078552
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 开本:16开
- 页数:578
- 出版时间:2014-09-01
- 条形码:9787510078552 ; 978-7-5100-7855-2
本书特色
《物理学家用的几何代数》包括导论;二维和三维的几何代数;经典力学;几何代数基础;相对性和时空;几何微积分;经典电动力学;量子论和自旋;多粒子态和量子纠缠;几何;微积分和群论中的高等论题;拉格朗日和哈密尔顿技巧;对称和规范理论;引力。《物理学家用的几何代数》读者对象:物理、几何代数专业的学生、老师和相关的科研人员。
内容简介
《物理学家用的几何代数》是一部不仅让对物理学感兴趣的读者的读物,也是一本对物理现实感兴趣的读者的读物。几何代数在过去的十年中得到了快速发展,成为物理和工程领域的一个重要课题。作者是该领域的一个领头人物,做了许多重大进展。书中带领读者走进该领域,其中包括好多应用,黑洞物理学和量子计算,非常适于作为一本几何代数物理应用方面的研究生教程。
目录
Preface
Notation
1 Introduction
1.1 Vector (linear) spaces
1.2 The scalar product
1.3 Complex numbers
1.4 Quaternions
1.5 The cross product
1.6 The outer product
1.7 Notes
1.8 Exercises
2 Geometric algebra in two and three dimensions
2.1 A new product for vectors
2.2 An outline of geometric algebra
2.3 Geometric algebra of the plane
2.4 The geometric algebra of space
2.5 Conventions
2.6 Reflections
2.7 Rotations
2.8 Notes
2.9 Exercises
3 Classical mechanics
3.1 Elementary principles
3.2 Two—body central force interactions
3.3 Celestial mechanics and perturbations
3.4 Rotating systems and rigid—body motion
3.5 Notes
3.6 Exercises
4 Foundations of geometric algebra
4.1 Axiomatic development
4.2 Rotations and refiections
4.3 Bases, frames and components
4.4 Linear algebra
4.5 Tensors and components
4.6 Notes
4.7 Exercises
5 Relativity and spacetime
5.1 An algebra for spacetime
5.2 Observers, trajectories and frames
5.3 Lorentz transformations
5.4 The Lorentz group
5.5 Spacetime dynamics
5.6 Notes
5.7 Exercises
6 Geometric calculus
6.1 The vector derivative
6.2 Curvilinear coordinates
6.3 Analytic functions
6.4 Directed integration theory
6.5 Embedded surfaces and vector manifolds
6.6 Elasticity
6.7 Notes
6.8 Exercises
7 Classical electrodynamics
7.1 Maxwell's equations
7.2 Integral and conservation theorems
7.3 The electromagnetic field of a point charge
7.4 Electromagnetic waves
7.5 Scattering and diffraction
7.6 Scattering
7.7 Notes
7.8 Exercises
8 Quantum theory and spinors
8.1 Non—relativistic quantum spin
8.2 Relativistic quantum states
8.3 The Dirac equation
8.4 Central potentials
8.5 Scattering theory
8.6 Notes
8.7 Exercises
9 Multiparticle states and quantum entanglement
9.1 Many—body quantum theory
9.2 Multiparticle spacetime algebra
9.3 Systems of two particles
9.4 Relativistic states and operators
9.5 Two—spinor calculus
9.6 Notes
9.7 Exercises
10 Geometry
10.1 Projective geometry
10.2 Conformal geometry
10.3 Conformal transformations
10.4 Geometric primitives in conformal space
10.5 Intersection and reflection in conformal space
10.6 Non—Euclidean geometry
10.7 Spacetime conformal geometry
10.8 Notes
10.9 Exercises
11 Further topics in calculus and group theory
11.1 Multivector calculus
11.2 Grassmann calculus
11.3 Lie groups
11.4 Complex structures and unitary groups
11.5 The generallinear group
11.6 Notes
11.7 Exercises
12 Lagrangian and Hamiltonian techniques
12.1 The Euler—Lagrange equations
12.2 Classical models for spin—1/2 particles
12.3 Hamiltonian techniques
12.4 Lagrangian field theory
12.5 Notes
12.6 Exercises
13 Symmetry and gauge theory
13.1 Conservation laws in field theory
13.2 Electromagnetism
13.3 Dirac theory
13.4 Gauge principles for gravitation
13.5 The gravitational field equations
13.6 The structure of the Riemann tensor
13.7 Notes
13.8 Exercises
14 Gravitation
14.1 Solving the field equations
14.2 Spherically—symmetric systems
14.3 Schwarzschild black holes
14.4 Quantum mechanics in a black hole background
14.5 Cosmology
14.6 Cylindrical systems
14.7 Axially—symmetric systems
14.8 Notes
14.9 Exercises
Bibliography
Index
Notation
1 Introduction
1.1 Vector (linear) spaces
1.2 The scalar product
1.3 Complex numbers
1.4 Quaternions
1.5 The cross product
1.6 The outer product
1.7 Notes
1.8 Exercises
2 Geometric algebra in two and three dimensions
2.1 A new product for vectors
2.2 An outline of geometric algebra
2.3 Geometric algebra of the plane
2.4 The geometric algebra of space
2.5 Conventions
2.6 Reflections
2.7 Rotations
2.8 Notes
2.9 Exercises
3 Classical mechanics
3.1 Elementary principles
3.2 Two—body central force interactions
3.3 Celestial mechanics and perturbations
3.4 Rotating systems and rigid—body motion
3.5 Notes
3.6 Exercises
4 Foundations of geometric algebra
4.1 Axiomatic development
4.2 Rotations and refiections
4.3 Bases, frames and components
4.4 Linear algebra
4.5 Tensors and components
4.6 Notes
4.7 Exercises
5 Relativity and spacetime
5.1 An algebra for spacetime
5.2 Observers, trajectories and frames
5.3 Lorentz transformations
5.4 The Lorentz group
5.5 Spacetime dynamics
5.6 Notes
5.7 Exercises
6 Geometric calculus
6.1 The vector derivative
6.2 Curvilinear coordinates
6.3 Analytic functions
6.4 Directed integration theory
6.5 Embedded surfaces and vector manifolds
6.6 Elasticity
6.7 Notes
6.8 Exercises
7 Classical electrodynamics
7.1 Maxwell's equations
7.2 Integral and conservation theorems
7.3 The electromagnetic field of a point charge
7.4 Electromagnetic waves
7.5 Scattering and diffraction
7.6 Scattering
7.7 Notes
7.8 Exercises
8 Quantum theory and spinors
8.1 Non—relativistic quantum spin
8.2 Relativistic quantum states
8.3 The Dirac equation
8.4 Central potentials
8.5 Scattering theory
8.6 Notes
8.7 Exercises
9 Multiparticle states and quantum entanglement
9.1 Many—body quantum theory
9.2 Multiparticle spacetime algebra
9.3 Systems of two particles
9.4 Relativistic states and operators
9.5 Two—spinor calculus
9.6 Notes
9.7 Exercises
10 Geometry
10.1 Projective geometry
10.2 Conformal geometry
10.3 Conformal transformations
10.4 Geometric primitives in conformal space
10.5 Intersection and reflection in conformal space
10.6 Non—Euclidean geometry
10.7 Spacetime conformal geometry
10.8 Notes
10.9 Exercises
11 Further topics in calculus and group theory
11.1 Multivector calculus
11.2 Grassmann calculus
11.3 Lie groups
11.4 Complex structures and unitary groups
11.5 The generallinear group
11.6 Notes
11.7 Exercises
12 Lagrangian and Hamiltonian techniques
12.1 The Euler—Lagrange equations
12.2 Classical models for spin—1/2 particles
12.3 Hamiltonian techniques
12.4 Lagrangian field theory
12.5 Notes
12.6 Exercises
13 Symmetry and gauge theory
13.1 Conservation laws in field theory
13.2 Electromagnetism
13.3 Dirac theory
13.4 Gauge principles for gravitation
13.5 The gravitational field equations
13.6 The structure of the Riemann tensor
13.7 Notes
13.8 Exercises
14 Gravitation
14.1 Solving the field equations
14.2 Spherically—symmetric systems
14.3 Schwarzschild black holes
14.4 Quantum mechanics in a black hole background
14.5 Cosmology
14.6 Cylindrical systems
14.7 Axially—symmetric systems
14.8 Notes
14.9 Exercises
Bibliography
Index
展开全部
作者简介
Chris Doran(C.多兰, 英国)是国际知名学者,在数学和物理学界享有盛誉。本书凝聚了作者多年科研和教学成果,适用于科研工作者、高校教师和研究生。
本类五星书
本类畅销
-
昆虫的生存之道
¥12.4¥38.0 -
13次时空穿梭之旅
¥18.7¥59.0 -
声音简史
¥19.2¥52.0 -
技术史入门
¥15.4¥48.0 -
勒维特之星-大发现系列丛书
¥5.0¥16.0 -
智慧宫029梦游者:西方宇宙观念的变迁
¥75.5¥128.0 -
发现之旅数的王国——世界共通的语言
¥41.8¥68.0 -
造就适者——DNA和进化的有力证据
¥20.4¥55.0 -
舟山群岛植物图志
¥20.1¥59.0 -
递归求解
¥10.9¥28.0 -
300种美鱼彩图馆
¥15.3¥39.8 -
博物人生-(第2版)
¥29.1¥78.0 -
天文学卷-异想天开-古今中外天文简史-《中国大百科全书》普及版
¥6.1¥19.0 -
现代物理学的概念和理论
¥23.1¥68.0 -
世纪幽灵-走近量子纠缠
¥10.9¥28.0 -
现代科技中的天文学
¥5.5¥13.0 -
控制论的发生与传播研究
¥6.3¥15.0 -
化学晚会
¥7.0¥20.0 -
实验设计及工程应用
¥9.5¥25.0 -
新科学时代的思考
¥46.2¥78.0