- ISBN:9787111497714
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 开本:16开
- 页数:290
- 出版时间:2015-05-01
- 条形码:9787111497714 ; 978-7-111-49771-4
本书特色
本书概述了统计学习领域,提供了理解大数据和复杂数据必不可少的工具,这些数据来自近20年来生物学、金融学、市场营销学和天体物理学等领域。书中介绍了一些*重要的建模方法和预测技术,以及它们的相关应用。内容涉及线性回归、分类、再抽样方法、压缩方法、基于树的方法和聚类等,用彩图和实例来阐释相关方法。因为本教材的主要目标是方便自然科学、工业和其他领域的从业者使用统计学习技术,所以每章都有在r中实现所介绍的分析方法的指导内容。本书只假定读者先修《线性回归》课程,并不要求读者具有矩阵代数知识。读者对象是那些希望利用前沿的统计学习技术来分析数据的人士,既包括统计学专业的师生,也包括非统计学专业的人员。
内容简介
本书概述了统计学习领域,提供了理解大数据和复杂数据必不可少的工具,这些数据来自近20年来生物学、金融学、市场营销学和天体物理学等领域。书中介绍了一些*重要的建模方法和预测技术,以及它们的相关应用。内容涉及线性回归、分类、再抽样方法、压缩方法、基于树的方法和聚类等,用彩图和实例来阐释相关方法。因为本教材的主要目标是方便自然科学、工业和其他领域的从业者使用统计学习技术,所以每章都有在R中实现所介绍的分析方法的指导内容。本书只假定读者先修《线性回归》课程,并不要求读者具有矩阵代数知识。读者对象是那些希望利用前沿的统计学习技术来分析数据的人士,既包括统计学专业的师生,也包括非统计学专业的人员。
目录
译者序
前言
第1章 导论
1.1 统计学习概述
1.2 统计学习简史
1.3 关于这本书
1.4 这本书适用的读者群
1.5 记号与简单的矩阵代数
1.6 本书的内容安排
1.7 用于实验和习题的数据集
1.8 本书网站
1.9 致谢
第2章 统计学习
2.1 什么是统计学习
2.2 评价模型精度
2.3 实验: r语言简介
2.4 习题
第3章 线性回归
3.1 简单线性回归
3.2 多元线性回归
3.3 回归模型中的其他注意事项
3.4 营销计划
3.5 线性回归与k*近邻法的比较
3.6 实验:线性回归
3.7 习题
第4章 分类
4.1 分类问题概述
4.2 为什么线性回归不可用
4.3 逻辑斯谛回归
4.4 线性判别分析
4.5 分类方法的比较
4.6 r实验:逻辑斯谛回归、lda、qda和knn
4.7 习题
第5章 重抽样方法
5.1 交叉验证法
5.2 自助法
5.3 实验:交叉验证法和自助法
5.4 习题
第6章 线性模型选择与正则化
6.1 子集选择
6.2 压缩估计方法
6.3 降维方法
6.4 高维问题
6.5 实验1:子集选择方法
6.6 实验2:岭回归和lasso
6.7 实验3:pcr和pls回归
6.8 习题
第7章 非线性模型
7.1 多项式回归
7.2 阶梯函数
7.3 基函数
7.4 回归样条
7.5 光滑样条
7.6 局部回归
7.7 广义可加模型
7.8 实验:非线性建模
7.9 习题
第8章 基于树的方法
8.1 决策树基本原理
8.2 装袋法、随机森林和提升法
8.3 实验:决策树
8.4 习题
第9章 支持向量机
9.1 *大间隔分类器
9.2 支持向量分类器
9.3 狭义的支持向量机
9.4 多分类的svm
9.5 与逻辑斯谛回归的关系
9.6 实验:支持向量机
9.7 习题
第10章 无指导学习
10.1 无指导学习的挑战
10.2 主成分分析
10.3 聚类分析方法
10.4 实验1:主成分分析
10.5 实验2:聚类分析
10.6 实验3:以nci60数据为例
10.7 习题
作者简介
Gareth James 斯坦福大学统计学博士毕业,师从Trevor Hastie。现为南加州大学马歇尔商学院统计学教授,美国统计学会会士,数理统计协会终身会员,新西兰统计协会会员。《Statistica Sinica》、《Applications and Case Studies》、《Theory and Methods》等期刊的副主编。 Daniela Witten 斯坦福大学统计学博士毕业,师从Robert Tibshirani。现为华盛顿大学生物统计学副教授,美国统计学会和国际数理统计协会会士,《Journal of Computational and Graphical Statistics》和《Biometrika》等期刊副主编。 Trevor Hastie 美国统计学家和计算机科学家,斯坦福大学统计学教授,英国皇家统计学会、国际数理统计协会和美国统计学会会士。Hastie参与开发了 R 中的大部分统计建模软件和环境,发明了主曲线和主曲面。 Robert Tibshirani 斯坦福大学统计学教授,国际数理统计协会、美国统计学会和加拿大皇家学会会士,1996年COPSS总统奖得主,提出lasso方法。Hastie和Tibshirani都是统计学习领域的泰山北斗,两人合著《The Elements of Statistical Learning》,还合作讲授斯坦福大学的公开课《统计学习》。
-
有限与无限的游戏:一个哲学家眼中的竞技世界
¥37.4¥68.0 -
硅谷之火-人与计算机的未来
¥14.3¥39.8 -
全图解零基础word excel ppt 应用教程
¥12.0¥48.0 -
机器学习
¥59.4¥108.0 -
深度学习的数学
¥43.5¥69.0 -
智能硬件项目教程:基于ARDUINO(第2版)
¥37.7¥65.0 -
元启发式算法与背包问题研究
¥38.2¥49.0 -
AI虚拟数字人:商业模式+形象创建+视频直播+案例应用
¥62.9¥89.8 -
UNIX环境高级编程(第3版)
¥164.9¥229.0 -
剪映AI
¥52.8¥88.0 -
深度学习高手笔记 卷2:经典应用
¥90.9¥129.8 -
纹样之美:中国传统经典纹样速查手册
¥77.4¥109.0 -
UG NX 12.0数控编程
¥24.8¥45.0 -
MATLAB计算机视觉与深度学习实战(第2版)
¥90.9¥128.0 -
界面交互设计理论研究
¥30.8¥56.0 -
UN NX 12.0多轴数控编程案例教程
¥25.8¥38.0 -
微机组装与系统维护技术教程(第二版)
¥37.8¥43.0 -
Go 语言运维开发 : Kubernetes 项目实战
¥48.2¥79.0 -
明解C语言:实践篇
¥62.9¥89.8 -
Linux服务器架设实战(Linux典藏大系)
¥84.5¥119.0