×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
工程与科学中的线性算子理论-(影印版)

工程与科学中的线性算子理论-(影印版)

1星价 ¥73.5 (7.5折)
2星价¥73.5 定价¥98.0
暂无评论
图文详情
  • ISBN:9787510095566
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:24开
  • 页数:624
  • 出版时间:2015-05-01
  • 条形码:9787510095566 ; 978-7-5100-9556-6

本书特色

该书旨在为工程师、科研工作者和应用数学工作者提供适用于他们的泛函分析的基础知识。尽管书中采取的是定义-定理-证明的数学模式,但是该书在所涵盖知识点的选取和解释说明方面还是下了很大的功夫。该书也可以被用作高级教程,为了便于不同知识背景的学生学习,书中附录部分涵盖了许多有益的数学课题。 读者对象:工程学、形式科学和数学方面的学生以及工程师、科研工作者和应用数学工作者。

内容简介

该书旨在为工程师、科研工作者和应用数学工作者提供适用于他们的泛函分析的基础知识。尽管书中采取的是定义-定理-证明的数学模式,但是该书在所涵盖知识点的选取和解释说明方面还是下了很大的功夫。该书也可以被用作高级教程,为了便于不同知识背景的学生学习,书中附录部分涵盖了许多有益的数学课题。 读者对象:工程学、形式科学和数学方面的学生以及工程师、科研工作者和应用数学工作者。

目录

Preface Chapter 1 Introduction 1. Black Boxes 2. Structure of the Plane 3. Mathematical Modeling 4. The Axiomatic Method. The Process of Abstraction 5. Proofs of Theorems Chapter 2 Set-Theoretic Structure 1. Introduction 2. Basic Set Operations 3. Cartesian Products 4. Sets of Numbers 5. Equivalence Relations and Partitions 6. Functions 7. Inverses 8. Systems Types Chapter 3 Topological Structure 1. Introduction Port A Introduction to Metric Spaces 2. Metric Spaces: Definition 3. Examples of Metric Spaces 4. Subspaces and Product Spaces 5. Continuous Functions 6. Convergent Sequences 7. A Connection Between Continuity and Convergence Part B Some Deeper Metric Space Concepts 8. Local Neighborhoods 9. Open Sets 10. More on Open Sets 11. Examples of Homeomorphic Metric Spaces 12. Closed Sets and the Closure Operation 13. Completeness 14. Completion of Metric Spaces 15. Contraction Mapping 16. Total Boundexlness and Approximations 17. Compactness Chapter 4 Algebraic Structure 1. Introduction Part A Introduction to Linear Spaces 2. Linear Spaces and Linear Subspaces 3. Linear Transformations 4. Inverse Transformations 5. Isomorphisms 6. Linear Independence and Dependence 7. Hamel Bases and Dimension 8. The Use of Matrices to Represent Linear Transformations 9. Equivalent Linear Transformations Part B Further Topics 10. Direct Sums and Sums 11. Projections 12. Linear Functionals and the Alge- braic Conjugate of a Linear Space 13. Transpose of a Linear Transformation Chapter 5 Combined Topological and Algebraic Structure 1. Introduction Part A Banach Spaces 2. Definitions 3. Examples of Normal Linear Spaces 4. Sequences and Series 5. Linear Subspaces 6. Continuous Linear Transformations 7. Inverses and Continuous Inverses 8. Operator Topologies 9. Equivalence of Normed Linear Spaces 10. Finite-Dimensional Spaces 11. Normed Conjugate Space and Conjugate Operator Part B Hilbert Spaces 12. Inner Product and HUbert Spaces 13. Examples 14. Orthogonality 15. Orthogonal Complements and the Projection Theorem 16. Orthogonal Projections 17. Orthogonal Sets and Bases: Generalized Fourier Series 18. Examples of Orthonormal Bases 19. Unitary Operators and Equiv- alent Inner Product Spaces 20. Sums and Direct Sums of Hilbert Spaces 21. Continuous Linear Functionals Part C Special Operators 22. The Adjoint Operator 23. Normal and Self-Adjoint Operators 24. Compact Operators 25. Foundations of Quantum Mechanics Chapter 6 Analysis of Linear Oper- ators (Compact Case) 1. Introductioa Part A An Illustrative Example 2. Geometric Analysis of Operators 3. Geometric Analysis. The Eigen- value-Eigenvector Problem 4. A Finite-Dimensional Problem Part B The Spectrum 5. The Spectrum of Linear Transformations 6. Examples of Spectra 7. Properties of the Spectrum Part C Spectral Analysis 8. Resolutions of the Identity 9. Weighted Sums of Projections 10. Spectral Properties of Compact, Normal, and Self-Adjoint Operators 11. The Spectral Theorem 12. Functions of Operators (Operational Calculus) 13. Applications of the Spectral Theorem 14. Nonnormal Operators Chapter 7 Analysis of Unbounded Operators 1. Introduction 2. Greens Functions 3. Symmetric Operators 4. Examples of Symmetric Operators 5. Sturmiouville Operators 6. Ghrdings Inequality 7. EUiptie Partial Differential Operators 8. The Dirichlet Problem 9. The Heat Equation and Wave Equation 10. Self-Adjoint Operators 11. The Cayley Transform 12. Quantum Mechanics, Revisited 13. Heisenberg Uncertainty Principle 14. The Harmonic Oscillator Appendix ,4 The H61der, Schwartz, and Minkowski Inequalities Appendix B Cardinality Appendix C Zoms temnm Appendix D Integration and Measure Theory 1. Introduction 2. The Riemann Integral 3. A Problem with the Riemann Integral 4. The Space Co 5. Null Sets 6. Convergence Almost Everywhere 7. The Lebesgue Integral 8. Limit Theorems 9. Miscellany 10. Other Definitions of the Integral 11. The Lebesgue Spaces, 12. Dense Subspaees of 13. Differentiation 14. The Radon-Nikodym Theorem 15. Fubini Theorem Appendix E Probability Spaces and Stochastic Processes 1. Probability Spaces 2. Random Variables and Probability Distributions 3. Expectation 4. Stochastic Independence 5. Conditional Expectation Operator 6. Stochastic Processes Index of Symbols Index
展开全部

作者简介

Arch W.Naylor(A.W.内勒), George R.Sell(G.R.塞尔)是国际知名学者,在数学界享有盛誉。本书凝聚了作者多年科研和教学成果,适用于科研工作者、高校教师和研究生。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航