×
金星教育系列丛书金星教育 中学教材全解 高中数学 必修1 RJ-A 学案版

包邮金星教育系列丛书金星教育 中学教材全解 高中数学 必修1 RJ-A 学案版

1星价 ¥15.7 (3.9折)
2星价¥15.7 定价¥39.8

温馨提示:5折以下图书主要为出版社尾货,大部分为全新(有塑封/无塑封),个别图书品相8-9成新、切口有划线标记、光盘等附件不全详细品相说明>>

暂无评论
图文详情
  • ISBN:9787545009460
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:16开
  • 页数:164
  • 出版时间:2019-06-01
  • 条形码:9787545009460 ; 978-7-5450-0946-0

本书特色

1.【图汇要点】---图解核心要点,形式新颖,易学易记
我们始终贯彻,知识清单化,要点图解化,学得快、记得牢是我们始终坚持的目标!
2.【题组练 领悟方法】---训练题组化,例题典型化
利用大数据提炼的高频考点设置题组,一讲 多练,练一题,学一法,会一类。解题方法上,点拨规律技巧,思维误区,由点到面,内挖外联,讲解通透。小编深知,高中三年,分秒必争,能做一道题学会一类题,就要讲透练会这类题。
3.【综合练 提升能力】----基础综合训练,难题拔高训练
设置“好题优选”和“难题拔高”。
“好题优选”----按照题目难易程度排序。选题偏向多个考点的综合题,突出方法技巧的题、辨析易错点的题。1.【图汇要点】---图解核心要点,形式新颖,易学易记 我们始终贯彻,知识清单化,要点图解化,学得快、记得牢是我们始终坚持的目标! 2.【题组练 领悟方法】---训练题组化,例题典型化 利用大数据提炼的高频考点设置题组,一讲 多练,练一题,学一法,会一类。解题方法上,点拨规律技巧,思维误区,由点到面,内挖外联,讲解通透。小编深知,高中三年,分秒必争,能做一道题学会一类题,就要讲透练会这类题。 3.【综合练 提升能力】----基础综合训练,难题拔高训练 设置“好题优选”和“难题拔高”。 “好题优选”----按照题目难易程度排序。选题偏向多个考点的综合题,突出方法技巧的题、辨析易错点的题。 “难题拔高”----选择稍高难度题,来自自主招生题、学科竞赛预赛题、平常考试的附加题、高三一轮综合题等。在解题技能上进行大幅度提升,不怕高难?来挑战吧! 4.【专题讲】----瞄准高考常考点的专项突破 高考中很多考点,教材讲解并不透彻,鉴于此,我们设置了专题讲,针对高考中常考的某一专项,进行集中突破!既有方法技巧,也有题目专练,不要错过哟! 5.【专项练】----高考常出题的专项训练 章末设置易错题专项练,五年高考真题练。 错题是需要积累的,你的错题本合理利用了吗?错题整理典型吗?试试易错题专项训练吧,可以发现你的缺点哟! 高考题是需要重点做的,但是你知道高考题怎么考吗?你知道高考题背后有哪些奥秘吗?解题中有哪些捷径?不但要做题,更要看高考题的解析,会有意想不到的收获! 6.【过关/综合检测试卷】-----检测学习效果 设置过关检测试卷,检测一下自己的学习成果,查漏补缺。 7.【考前背重点】-----考前扫一扫,考场拿高分 这可是干货中的干货,每个周末、每次考试之前看一眼,考场上能多拿好几分呢!

内容简介

本书解读各出版社的教科书,从学习目标到考点考情,从内容讲解到典题剖析,从要点归纳到易误警示,从教材原型到教材真题,从章末总结到全书归纳,多角度对教材进行解析。它是教师备课时的参考,家长辅导时的工具,学生学习时的帮手。本书不仅教会学生知识,更主要的是教会学生学习方法,达到了对学生核心素养的培养与提升。

目录

**章 集合与函数概念 1.1 集合 1.1.1 集合的含义与表示 题组一 集合中元素特性的应用 1 元素的三个特性 2 元素个数问题 3 参数问题 题组二 元素与集合的关系的判断与应用 1 元素与集合的关系的判断 2 已知元素与集合的关系求参数 题组三 集合的表示方法 题组四 集合的新定义问题 题组五 易错易混问题 1 忽略集合元素的互异性 2 混淆点集与数集 1.1.2 集合间的基本关系 题组一 集合间的关系判断及应用 题组二 集合的子集、真子集 1 确定集合的子集、真子集 2 确定子集、真子集的个数 题组三 由集合间的关系求参数 题组四 易错易混问题——忽略空集是任何集合的子集 1.1.3 集合的基本运算 题组一 集合的交集、并集与补集运算 题组二 集合运算中的求参数问题 1 交集、并集关系求参数 2 集合混合运算求参数值(范围) 题组三 集合运算中的综合问题 1 集合运算的综合问题 2 补集思想的应用 题组四 集合信息题 题组五 易错易混问题 1 集合运算时不能正确理解集合的含义 2 忽视对空集的讨论 3 集合运算求参数时忽略元素的互异性 专项练 高考中的集合问题 考向一 集合的含义与表示 考向二 集合间的基本关系 考向三 集合间的基本运算 考向四集合新信息题 1.2 函数及其表示 1.2.1 函数的概念 题组一 函数关系的判断 1 判断所给关系是不是函数 2 判断两个函数是否相等 题组二 函数定义域问题 1 已知解析式求定义域 2 求抽象函数、复合函数的定义域 3 已知函数的定义域求参数问题 4 应用问题中函数的定义域 题组三 函数值或函数的值域问题 1 函数求值问题 2 求函数的值域 3 已知值域求参数 题组四 易错易混问题 1 求定义域时非等价化简致误 2 用换元法求值域时,忽视新元的取值范围 3 误认为f(g(x))与f(h(x))中“x”含义相同 1.2.2 函数的表示法 题组一 函数的三种表示方法 题组二 求函数的解析式 1 已知函数类型求函数解析式 2 已知f(g(x))的解析式求f(x)的解析式 3 已知含f(x),f(1/x)或f(-x)的等式求f(x)的解析式 4 求抽象函数的解析式 5 求实际问题中的函数的解析式 题组三 函数图象问题 1 图象的画法 2 图象的识别 3 图象的应用 题组四 分段函数问题 1 分段函数的求值问题 2 不等式求参数问题 题组五 易错易混问题——忽视函数定义域致误 1.3 函数的基本性质 1.3.1 单调性与*大(小)值 题组一 函数单调性的证明 题组二 函数单调性的判断及单调区间的求解 1 定义法 2 图象法 3 性质法 4 复合函数的单调性 题组三 函数单调性的应用 1 利用函数的单调性比较大小 2 利用函数的单调性解不等式 3 利用函数的单调性求参数的取值范围 题组四 求函数的*值 1 利用函数的单调性求*值 2 二次函数求*值 3 利用图象求*值 题组五 函数*值的应用 1 求解恒成立问题 2 实际应用问题 题组六 易错易混问题——忽视定义域的限制 1.3.2 奇偶性 题组一 函数奇偶性的判断 1 已知函数解析式判断奇偶性 2 判断分段函数的奇偶性 3 抽象函数奇偶性的判断 题组二 函数奇偶性的应用 1 利用奇偶性求参数的值 2 利用奇偶性求函数值 3 利用奇偶性求函数解析式 题组三 奇、偶函数图象特征的应用 题组四 奇偶性的综合应用 1 奇偶性与对称性的综合应用 2 奇偶性与单调性的综合应用 题组五 易错易混问题——研究奇偶性问题时忽视定义域 专项练 单调性与奇偶性 专项练 高考中的函数问题 考向一 函数的概念与表示 考向二 分段函数 考向三 函数的图象 考向四 函数的性质 阶段复习 本章核心素养培养 思想方法归纳 高难问题突破 阶段复习 **章过关检测试卷(A) 阶段复习 **章过关检测试卷(B)第二章 基本初等函数(I) 2.1 指数函数 2.1.1 指数与指数幂的运算 题组一 根式的化筒与求值 题组二 分数指数幂的化简与求值 题组三 利用乘法公式化简含指数幂的代数式 题组四 含附加条件的求值问题 题组五 指数幂等式及幂的方程问题 题组六 易错易混问题——忽略偶次算术根为非负数 2.1.2 指数函数及其性质 题组一 指数函数的概念问题 题组二 与指数函数有关的定义域和值域问题 1 形如y=d(x)函数的定义域和值域问题 2 形如)y=f(ax)函数的定义域和值域问题 题组三 指数函数的图象及应用 1 图象过定点问题 2 画指数型函数的图象 3 图象的识别问题 4 图象的应用——数形结合 题组四 指数函数的单调性及其应用 1 利用指数函数的单调性研究*值问题 2 利用指数函数的单调性比较大小 3 利用指数函数的单调性解指数不等式 题组五指数型复合函数问题 1 指数型复合函数的单调性问题 2 指数型复合函数的奇偶性问题 3 指数型复合函数的综合问题 题组六 易错易混问题——忽略指数函数的值域 2.2 对数函数 2.2.1 对数与对数运算 题组一 对数的概念 题组二 对数式的化简与求值 题组三 换底公式的应用 题组四 有附加条件的对数武求值问题 题组五 对数方程的求解 题组六 易错易混问题——忽略对底数和真数的限制条件 2.2.2 对数函数及其性质 题组一 对数函数的概念 题组二 对数函数的图象及应用 1 图象过定点问题 2 图象的识别问题 3 图象的作法及应用 题组三 对数函数的单调性及其应用 1 对数值比较大小 2 对数不等式 题组四 对数型复合函数问题 1 对数型复合函数的单调性问题 2 对数型复合函数的值域与*值问题 3 对数型复合函数的奇偶性问题 4 与对数函数有关的综合与创新问题 题组五 反函数及其应用 题组六 易错易混问题 1 忽略真数大于0致误 2 忽略对底数的讨论致误 2.3 幂函数 题组一 幂函数的概念 1 幂函数的定义 2 求幂函数的定义域和值域 题组二 幂函数的图象及其应用 题组三 幂函数的单调性及其应用 1 比较幂的大小 2 已知单调性求参数 题组四 易错易混问题——忽略对底数的讨论而致误 专项练 高考中的基本初等函数(I)问题 考向一 指数与对数的运算 考向二 指数型、对数型函数的定义域、值域 考向三 指数型、对数型函数的奇偶性 考向四 指数函数与对数函数的单调性 考向五 指数函数与对数函数的图象 阶段复习 本章核心素养培养 思想方法归纳 高难问题突破 阶段复习 第二章过关检测试卷(A) 阶段复习 第二章过关检测试卷(B)第三章 函数的应用 3.1 函数与方程 3.1.1 方程的根与函数的零点 题组一 函数的零点及其个数的判断 1 求函数的零点 2 判断函数零点(方程的根)的个数 题组二 判断函数零点(方程的根)所在区间 题组三 已知函数零点个数或所在区间,求参数取值范围 题组四 一元二次方程根的分布问题 题组五 易错易混问题 1 忽视零点存在性定理的条件 2 错用零点存在性定理 3 忽略分类讨论 3.1.2 用二分法求方程的近似解 题组一 二分法的概念 题组二 函数零点的判断 题组三 用二分法求方程的近似解(或函数零点的近似值) 题组四 易错易混问题——对精确度理解不正确 3.2 函数模型及其应用 题组一 几类不同增长的函数模型 题组二 利用函数模型解决实际问题 1 利用一次、二次函数模型解决实际问题 2 利用指数、对数、幂函数模型解决实际问题 3 利用分段函数模型解决实际问题 题组三 易错易混问题 1 审题不清误求解析式 2 忽略题中的限制条件 专项练 高考中的函数的应用问题 考向一 函数与方程 考向二 函数模型及其应用 阶段复习 本章核心素养培养 思想方法归纳 高难问题突破 阶段复习 第三章过关检测试卷综合复习 必修1综合过关检测试卷
展开全部

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航