×
风控要略――互联网业务反欺诈之路

风控要略――互联网业务反欺诈之路

1星价 ¥73.3 (7.4折)
2星价¥73.3 定价¥99.0
暂无评论
图文详情
  • ISBN:9787121392788
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:其他
  • 页数:328
  • 出版时间:2020-08-01
  • 条形码:9787121392788 ; 978-7-121-39278-8

本书特色

适读人群 :本书适合互联网投资人、创业者、产品经理、运营人员和安全风控人员阅读。《风控要略——互联网业务反欺诈之路》全面、系统地介绍了互联网业务安全行业全貌,内容包括互联网业务安全发展历程、黑产攻击态势、业务风险防控方案、机器学习算法的使用以及行业未来发展走向等。

内容简介

这是一本全面描述互联网业务反欺诈体系的书籍,本书主要分为洞察黑产、体系构建、实战教程和新的战场4个部分。部分介绍了黑产欺诈团伙的运作套路和攻击手段;第2部分总结了我们在构建反欺诈技术体系过程中沉淀的实践经验;第3部分分享了我们和黑产对抗的多个实战案例,以及机器学习算法的综合运用;第4部分介绍了我们在物联网、内容安全、隐私合规等方面的实践和对海外厂商的观察。读者通过仔细阅读本书,可以对互联网反欺诈的过去、现在和未来有一个系统的认识。希望本书能够为正在关注该领域或从事相关工作的读者提供有价值的参考。本书适合互联网投资人、创业者、产品经理、运营人员和安全风控人员阅读。

目录

引言 互联网业务安全概述 1

**部分 洞察黑产

第1章 黑产发展态势 8

1.1 黑产组织结构 8

1.2 黑产成员分布 11

1.3 黑产专业化分工 12

1.4 黑产攻击规模 13

1.5 电信欺诈黑产 15

1.6 本章小结 16

第2章 黑产武器库概览 17

2.1 虚假号码 17

2.1.1 猫池 18

2.1.2 短信验证码 20

2.1.3 接码平台 21

2.1.4 空号注册 22

2.1.5 流量卡和物联网卡 22

2.1.6 手机rom后门 23

2.2 代理IP 23

2.3 设备伪造工具 25

2.3.1 改机工具 25

2.3.2 多开工具 26

2.3.3 Root/越狱工具 27

2.3.4 Xposed 28

2.3.5 Cydia Substrate 28

2.3.6 Frida 28

2.3.7 硬改工具 29

2.3.8 脱机挂 29

2.3.9 备份恢复/抹机恢复 30

2.3.10 模拟器 32

2.3.11 定制浏览器 33

2.3.12 自动化脚本 34

2.4 其他工具 35

2.4.1 位置伪造工具 35

2.4.2 群控 36

2.4.3 工具集 42

2.5 本章小结 43

第二部分 体系构建

第3章 反欺诈体系建设思路 46

3.1 动态防控理念 46

3.2 防控体系构建 47

3.3 本章小结 50

第4章 风控核心组件设备指纹 51

4.1 设备指纹的原理 51

4.2 设备指纹的技术实现 52

4.2.1 Android设备指纹 52

4.2.2 iOS设备指纹 54

4.2.3 Web设备指纹 56

4.2.4 设备ID生成与恢复逻辑 58

4.2.5 被动式识别技术 61

4.3 代码保护 62

4.3.1 JS代码混淆技术 63

4.3.2 Android/iOS SDK加固保护 77

4.4 本章小结 92

第5章 基于用户行为的生物探针 93

5.1 生物探针 94

5.2 无感认证 95

5.2.1 无感认证的基础 96

5.2.2 无感认证的构建 97

5.3 生物探针的应用场景 100

5.4 本章小结 100

第6章 智能验证码的前世今生 102

6.1 验证码的诞生 102

6.1.1 验证码的本质 103

6.1.2 验证码的发展 105

6.2 验证码的攻防 108

6.2.1 字符验证码的识别 108

6.2.2 新型验证码的识别 112

6.2.3 对抗黑产的方案 115

6.3 设计一款优秀的验证码 117

6.3.1 设计标准 117

6.3.2 设计实战 118

6.4 本章小结 122

第7章 风控中枢决策引擎系统 123

7.1 规则引擎 123

7.1.1 脚本引擎 124

7.1.2 开源规则引擎 125

7.1.3 商业规则引擎 125

7.1.4 几种规则引擎实现方案的对比 126

7.2 规则管理 127

7.3 规则推送 128

7.4 规则执行 129

7.5 外部系统集成 129

7.6 灰度测试 130

7.7 本章小结 131

第8章 海量数据的实时指标计算 132

8.1 实时指标计算概述 132

8.2 实时指标计算方案 135

8.2.1 基于数据库SQL的计算方案 135

8.2.2 基于事件驱动的计算方案 135

8.2.3 基于实时计算框架的计算方案 136

8.2.4 实时指标计算方案对比 141

8.3 反欺诈实时指标计算实践 141

8.3.1 实时指标计算引擎原型 141

8.3.2 数据拆分计算 144

8.3.3 分片计算 147

8.3.4 引入Flink 148

8.3.5 Lambda架构 148

8.4 反欺诈实时指标计算系统 149

8.5 本章小结 151

第9章 风险态势感知系统 152

9.1 基于统计分析的方法 153

9.1.1 核心风控指标数据 154

9.1.2 核心业务数据 156

9.2 基于无监督学习的方法 157

9.3 基于欺诈情报的方法 158

9.4 预警系统 159

9.5 本章小结 160

第10章 风险数据名单体系 161

10.1 名单体系的价值 162

10.2 名单体系的设计 162

10.3 名单体系的生命周期 166

10.4 名单体系质量管理 168

10.5 本章小结 168

第11章 欺诈情报体系 169

11.1 情报采集 169

11.1.1 数据情报 170

11.1.2 技术情报 171

11.1.3 事件情报 174

11.2 情报分析 175

11.3 本章小结 179

第三部分 实战教程

第12章 机器学习算法的使用 182

12.1 机器学习的广泛应用 182

12.2 机器学习的落地过程 183

12.2.1 特征工程 183

12.2.2 模型选择 187

12.2.3 模型训练 195

12.2.4 工程化和业务落地 197

12.3 机器学习实战案例 198

12.3.1 案例一:黑产设备群控网络挖掘 198

12.3.2 案例二:黑产用户行为聚类分析 205

12.3.3 案例三:金融在线申请反欺诈 212

12.4 本章小结 220

第13章 互联网反欺诈实战 221

13.1 典型反欺诈业务场景风险分析 221

13.1.1 垃圾注册风险识别 222

13.1.2 批量登录风险识别 223

13.1.3 “薅羊毛”风险识别 225

13.1.4 裂变拉新作弊风险识别 227

13.1.5 “任务”作弊风险识别 229

13.1.6 恶意退单风险识别 229

13.2 解决方案设计示例 231

13.2.1 电商薅羊毛 233

13.2.2 裂变拉新 236

13.3 策略部署 239

13.3.1 策略配置 239

13.3.2 策略迭代 241

13.4 运营监控 241

13.4.1 监控预警报表 241

13.4.2 态势感知 242

13.4.3 情报监控 243

13.5 本章小结 244

第四部分 新的战场

第14章 物联网时代的风控 246

14.1 物联网安全态势 246

14.2 物联网安全威胁分析 247

14.2.1 云端平台安全威胁 248

14.2.2 网络通信安全威胁 249

14.2.3 设备终端安全威胁 250

14.2.4 物联网安全监管要求 253

14.3 物联网安全风险控制体系建设思路 254

14.4 物联网安全风险态势感知系统 256

14.5 本章小结 260

第15章 内容安全与合规 261

15.1 内容安全合规概述 261

15.2 文本内容安全 263

15.2.1 敏感词系统 264

15.2.2 基于NLP的AI模型 267

15.3 图像内容安全 271

15.3.1 图像分类 271

15.3.2 敏感人物识别 276

15.3.3 图像文字识别 285

15.4 语音内容安全 286

15.4.1 有语义语音 286

15.4.2 无语义语音 287

15.5 视频内容安全 288

15.5.1 视频内容安全处理流程 289

15.5.2 关键帧提取 289

15.6 内容安全工程 290

15.7 内容安全系统的评价指标 291

15.8 本章小结 292

第16章 风控与数据合规使用 293

16.1 网络安全立法进程 293

16.2 个人数据合规使用 294

16.2.1 用户隐私政策 295

16.2.2 数据安全流转 296

16.3 数据合规技术创新实践 298

16.3.1 数据匿名查询 298

16.3.2 区块链共享黑名单 299

16.4 本章小结 300

第17章 海外风控公司 302

17.1 Arkose Labs 302

17.2 Sift 304

17.3 Forter 305

17.4 Shape Security 306

17.5 Okta 308

17.6 本章小结 313


展开全部

作者简介

马传雷 曾任同盾科技反欺诈研究院执行院长、广州中国科学院软件应用技术研究所电子数据取证实验室特聘专家,还曾担任腾讯安全应急响应中心技术负责人、绿盟科技安全技术部总监等职务,国内知名安全专家。 孙 奇 曾任同盾科技反欺诈产品研发总监,浙江大学硕士,知名Java架构师、Qcon全球开发者大会讲师。 高 岳 东南大学硕士,曾任同盾科技移动安全产品研发总监,也曾在腾讯安全平台部负责移动产品安全检测能力建设和安全产品研发,业务安全专家。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航