×
暂无评论
图文详情
  • ISBN:9787560392288
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:24cm
  • 页数:1047页
  • 出版时间:2021-01-01
  • 条形码:9787560392288 ; 978-7-5603-9228-8

内容简介

本书是一部版权引进自著名出版公司斯普林格出版公司的英文原版数学著作。这本书的目的是回顾分析学中的基本理论及其问题与解决方法.通过这些问题,读者可以检验自己对这些理论的理解程度,也可以发现这些理论的延伸和文献中不规范的附加结果.本书的主题或多或少涵盖了标准的本科高年级和研究生的分析课程的一些内容。

目录

1 Metric Spaces 1.1 Introduction 1.1.1 Basic Definitions and Notation 1.1.2 Sequences and Complete Metric Spaces 1.1.3 Topology of Metric Spaces 1.1.4 Baire Theorem 1.1.5 Continuous and Uniformly Continuous Functions 1.1.6 Completion of Metric Spaces: Equivalence of Metrics 1.1.7 Pointwise and Uniform Convergence of Maps 1.1.8 Compact Metric Spaces 1.1.9 Connectedness 1.1.10 Partitions of Unity 1.1.11 Products of Metric Spaces 1.1.12 Auxiliary Notions 1.2 Problems 1.3 Solutions Bibliography 2 Topological Spaces 2.1 Introduction 2.1.1 Basic Definitions and Notation 2.1.2 Topological Basis and Subbasis 2.1.3 Nets 2.1.4 Continuous and Semicontinuous Functions 2.1.5 Open and Closed Maps: Homeomorphisms 2.1.6 Weak (or Initial) and Strong (or Final) Topologies 2.1.7 Compact Topological Spaces 2.1.8 Connectedness 2.1.9 Urysohn and Tietze Theorems 2.1.10 Paracompact and Baire Spaces 2.1.11 Polish and Souslin Sets 2.1.12 Michael Selection Theorem 2.1.13 The Space C(X;Y) 2.1.14 Elements of Algebraic Topology I: Homotopy 2.1.15 Elements of Algebraic Topology II: Homology 2.2 Problems 2.3 Solutions Bibliography 3 Measure, Integral and Martingales 3.1 Introduction 3.1.1 Basic Definitions and Notation 3.1.2 Measures and Outer Measures 3.1.3 The Lebesgue Measure 3.1.4 Atoms and Nonatomic Measures 3.1.5 Product Measures 3.1.6 Lebesgue-Stieltjes Measures 3.1.7 Measurable Functions 3.1.8 The Lebesgue Integral 3.1.9 Convergence Theorems 3.1.10 LP-Spaces 3.1.11 Multiple Integrals: Change of Variables 3.1.12 Uniform Integrability: Modes of Convergence 3.1.13 Signed Measures 3.1.14 Radon-Nikodym Theorem 3.1.15 Maximal Function and Lyapunov Convexity Theorem 3.1.16 Conditional Expectation and Martingales 3.2 Problems 3.3 Solutions Bibliography 4 Measures and Topology 4.1 Introduction 4.1.1 Borel and Baire a-Algebras 4.1.2 Regular and Radon Measures 4.1.3 Riesz Representation Theorem for Continuous Functions 4.1.4 Space of Probability Measures: Prohorov Theorem 4.1.5 Polish, Souslin and Borel Spaces 4.1.6 Measurable Multifunctions: Selection Theorems 4.1.7 Projection Theorems 4.1.8 Dual of LP(Ω) for 1 ≤ p ≤∞ 4.1.9 Sequences of Measures: Weak Convergence in LP(Ω) 4.1.10 Covering Theorems 4.1.11 Lebesgue Differentiation Theorem 4.1.12 Bounded Variation and Absolutely Continuous Functions 4.1.13 Hausdorff Measures: Change of Variables 4.1.14 Caratheodory Functions 4.2 Problems 4.3 Solutions Bibliography 5 Functional Analysis 5.1 Introduction 5.1.1 Locally Convex, Normed and Banach Spaces 5.1.2 Linear Operators: Quotient Spaces--Riesz Lemma 5.1.3 The Hahn-Banach Theorem 5.1.4 Adjoint Operators and Annihilators 5.1.5 The Three Basic Theorems of Linear Functional Analysis 5.1.6 The Weak Topology 5.1.7 The Weak* Topology 5.1.8 Reflexive Banach Spaces 5.1.9 Separable Banach Spaces 5.1.10 Uniformly Convex Spaces 5.1.11 Hilbert Spaces 5.1.12 Unbounded Linear Operators 5.1.13 Extremal Structure of Sets 5.1.14 Compact Operators 5.1.15 Spectral Theory 5.1.16 Differentiability and the Geometry of Banach Spaces 5.1.17 Best Approximation: Various Theorems for Banach Spaces 5.2 Problems 5.3 Solutions Bibliography Other Problem Books List of Symbols Index 编辑手记
展开全部

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航