×
暂无评论
图文详情
  • ISBN:9787547817186
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:16开
  • 页数:364
  • 出版时间:2014-01-01
  • 条形码:9787547817186 ; 978-7-5478-1718-6

本书特色

本书是数学史的经典名著,初版以来其影响力一直长盛不衰。著作可谓博大精深,洋洋百万余言,阐述了从古代直到20世纪头几十年中的数学创造和发展,特别着重于主流数学的工作。大量**手资料的旁征博引,非常全面地提及各个历史时期的数学家特别是著名数学家的贡献,是《古今数学思想》的一大特色。《古今数学思想》所关心的还有:对数学本身的看法,不同时期中这种看法的改变,以及数学家对于他们自己成就的理解。本书体现了作者的深厚功力。

内容简介

  莫里斯·克莱因的这部博大精深的不朽著作,向人们展示了数学从巴比伦和埃及起源时至20世纪*初几个年代的主要创造。围绕着数学思想的主要概念以及为其做出贡献的人物组织起来的这本巨著,给人们提供了数学发展的一个概观,揭示了隐藏在今天这个学科互不相连的各个分支后面的统一性。《古今数学思想(第二册)》所关心的还有:对数学本身的看法,不同时期中这种看法的改变,以及数学家对于他们自己成就的理解。全书的特色是:尽管这洋洋百万言含有大量资料的旁征博引,却又能做到组织有机、脉络清晰、主题突出,充分体现了作者深厚的功力。  《古今数学思想(第二册)》对于广大理工科师生、科学史研究者和数学爱好者,都是不可多得的精神食粮。

目录

第18章 17世纪的数学
1.数学的转变
2.数学和科学
3.数学家之间的交流
4.展望18世纪

第19章 18世纪的微积分
1.引言
2.函数概念
3.积分技术与复量
4.椭圆积分
5.进一步的特殊函数
6.多元函数微积分
7.在微积分中提供严密性的尝试

第20章 无穷级数
1.引言
2.无穷级数的早期工作
3.函数的展开
4.级数的妙用
5.三角级数
6.连分式
7.收敛与发散问题

第21章 18世纪的常微分方程
1.主题
2.一阶常微分方程
3.奇解
4.二阶方程与黎卡蒂方程
5.高阶方程
6.级数法
7.微分方程组
8.总结

第22章 18世纪的偏微分方程
1.引言
2.波动方程
3.波动方程的推广
4.位势理论
5.一阶偏微分方程
6.蒙日和特征理论
7.蒙日和非线性二阶方程
8.一阶偏微分方程组
9.这一门数学学科的产生

第23章 18世纪的解析几何和微分几何
1.引言
2.基本解析几何
3.高次平面曲线
4.微分几何的开端
5.平面曲线
6.空间曲线
7.曲面的理论
8.映射问题

第24章 18世纪的变分法
1.*初的问题
2.欧拉的早期工作
3.*小作用原理
……
第25章 18世纪的代数
第26章 18世纪的数学
第27章 单复变函数
第28章 19世纪的偏微分方程
第29章 19世纪的常微分方程
第30章 19世纪的变分法
第31章 伽罗瓦理论
第32章 四元数,向量和线性结合代数
第33章 行列式和矩阵

展开全部

作者简介

  莫里斯·克莱因(Morris Kline,1908-1992),美国著名应用数学家、数学史家、数学教育家、数学哲学家和应用物理学家。纽约大学库朗数学研究所教授和荣誉退休教授。他曾在该所主持一个电磁学研究部门达20年之久。克莱因的著作很多,该书是他的代表作。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航