×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
智能信息处理与量子计算

智能信息处理与量子计算

1星价 ¥41.3 (7.0折)
2星价¥41.3 定价¥59.0
暂无评论
图文详情
  • ISBN:9787121426216
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:其他
  • 页数:290
  • 出版时间:2022-02-01
  • 条形码:9787121426216 ; 978-7-121-42621-6

内容简介

本书是有关智能信息处理与量子智能计算方法及其应用的著作,系统介绍了智能信息处理与量子智能计算方面的基础理论及各种新技术、新方法,并从4G及5G移动通信、认知无线电、语音信号处理等角度进行了实例剖析。全书分为两篇共12章。**篇“智能信息处理及其应用”侧重介绍智能信息处理领域的基本原理与关键技术;第二篇“量子智能信息处理”侧重介绍基于量子计算的智能信息处理技术。本书还提供了电子课件,读者可登录华信教育资源网(www.hxedu.com.cn)免费下载使用。 本书被列为“十三五”江苏省高等学校重点教材,可作为高等院校电子信息、计算机、自动化、人工智能、量子信息科学等相关专业研究生和高年级本科生的教材,也可作为相关领域人员的教学、科研、进修参考用书。

目录

目  录
**篇 智能信息处理及其应用
第1章 绪论 2
1.1 智能计算 2
1.2 人工智能 4
1.3 *优化方法 7
1.4 智能信息处理方法 10
第2章 神经网络信息处理 12
2.1 神经网络信息处理基础 12
2.1.1 人工神经元 12
2.1.2 神经网络拓扑结构 14
2.1.3 神经网络模型 16
2.1.4 神经网络学习规则及算法 17
2.1.5 神经网络计算的特点 18
2.2 BP神经网络模型 19
2.2.1 BP神经网络结构 19
2.2.2 BP算法的基本思想和基本流程 20
2.2.3 BP神经网络设计 21
2.3 Hopfield神经网络 22
2.3.1 Hopfield神经网络模型 22
2.3.2 离散型Hopfield神经网络 22
2.3.3 连续型Hopfield神经网络 24
2.4 RBF神经网络 25
2.4.1 RBF神经元模型 25
2.4.2 RBF神经网络模型 26
2.4.3 RBF神经网络的创建与学习 27
2.5 贝叶斯神经网络 28
2.5.1 贝叶斯方法 29
2.5.2 神经网络的贝叶斯学习 29
2.5.3 贝叶斯神经网络算法 30
2.6 卷积神经网络 30
2.6.1 卷积神经网络结构 30
2.6.2 多卷积核 31
2.6.3 池化 32
2.6.4 卷积神经网络的训练 33
2.7 应用实例 34
2.7.1 基于RBF神经网络的语音增强 34
2.7.2 基于卷积神经网络的情绪识别 38
思考题 39
参考文献 39
第3章 遗传算法 41
3.1 遗传算法基础 41
3.1.1 进化计算 41
3.1.2 生物遗传概念与遗传算法 41
3.1.3 遗传算法发展概况 42
3.2 遗传算法的基本原理 42
3.2.1 遗传算法结构和主要参数 42
3.2.2 常见编码方法和基本遗传操作 43
3.2.3 遗传算法参数选择及其对算法收敛性的影响 46
3.2.4 遗传算法的特点 47
3.3 协同进化遗传算法 48
3.3.1 协同进化算法 48
3.3.2 协同进化遗传算法流程 48
3.3.3 协同进化遗传算法的设计 49
3.4 应用实例 50
3.4.1 TSP问题的遗传算法解 50
3.4.2 基于遗传算法的MIMO-OFDM系统信号检测方案 52
3.4.3 基于遗传算法的SIMO信道子空间盲估计 53
思考题 54
参考文献 54
第4章 免疫算法 56
4.1 人工免疫系统 56
4.1.1 免疫算法的生物学基础 56
4.1.2 免疫算法提出 57
4.1.3 克隆选择和扩增 58
4.2 免疫算法基本原理 59
4.2.1 免疫算法的基本思想 59
4.2.2 免疫算法与免疫系统的对应 60
4.2.3 免疫算法的多样性和收敛性 61
4.2.4 常见免疫算法 61
4.3 应用实例 62
4.3.1 用免疫算法求解TSP问题 62
4.3.2 基于免疫克隆算法的K-均值聚类算法 66
思考题 68
参考文献 68
第5章 群智能算法 70
5.1 粒子群优化算法 70
5.1.1 粒子群优化算法的基本原理 70
5.1.2 基本粒子群优化算法 70
5.1.3 带惯性权重的粒子群优化算法 71
5.1.4 带收缩因子的粒子群优化算法 72
5.2 蚁群优化算法 73
5.2.1 蚁群优化算法的原理 73
5.2.2 蚁群优化算法的改进思路 74
5.3 菌群优化算法 75
5.3.1 菌群优化算法的原理 75
5.3.2 菌群优化算法寻优过程细菌分布 77
5.3.3 菌群优化算法性能测试 80
5.3.4 菌群优化算法的改进 81
5.4 应用实例 82
5.4.1 基于粒子群优化算法的矢量量化码书设计 82
5.4.2 基于蚁群优化算法的LTE系统信号检测研究 83
思考题 86
参考文献 86
第6章 机器学习算法 88
6.1 机器学习基础和计算理论 88
6.1.1 概念学习 88
6.1.2 计算理论 89
6.2 监督学习经典方法 91
6.2.1 K-近邻算法 91
6.2.2 决策树 91
6.2.3 朴素贝叶斯 93
6.2.4 支持向量机 95
6.3 非监督学习经典方法 99
6.3.1 EM算法 99
6.3.2 K-means算法 100
6.3.3 层次聚类 101
6.3.4 DBSCAN算法 102
6.4 先进机器学习模型 103
6.4.1 集成学习 103
6.4.2 强化学习 108
6.4.3 迁移学习 110
6.4.4 深度学习 113
6.5 应用实例 125
思考题 127
参考文献 128
第二篇 量子智能信息处理
第7章 量子智能信息处理概述 130
7.1 量子计算 130
7.2 量子信息处理基础 131
7.2.1 量子信息的表示:量子比特 131
7.2.2 量子信息的存储:量子寄存器 132
7.2.3 量子信息的处理:算子与量子态的演化 133
7.2.4 量子信息处理器:量子逻辑门与量子门组网络 135
7.2.5 量子信息处理特性:量子并行与量子纠缠 138
7.3 量子智能优化算法 139
思考题 141
参考文献 141
第8章 量子神经网络 143
8.1 人工神经网络向量子神经网络的演变 143
8.1.1 演变的动因 143
8.1.2 人工神经网络有关概念的量子类比 144
8.1.3 量子神经网络的量子并行处理能力及其优势 145
8.2 量子神经网络模型 146
8.2.1 量子神经元 146
8.2.2 量子衍生神经网络模型 147
8.2.3 量子自组织映射模型 148
8.2.4 量子联想记忆模型 148
8.2.5 量子纠缠神经网络模型 149
8.2.6 量子跃迁神经网络模型 151
8.2.7 量子BP神经网络模型 152
8.3 量子神经元模型特性 154
8.3.1 量子神经元的量子力学特性 154
8.3.2 量子神经元学习算法 154
8.3.3 算法模拟实现及特性分析 156
8.3.4 量子神经元逻辑运算特性 157
8.3.5 量子神经元的非线性映射特性 159
8.4 应用实例 160
8.4.1 量子BP神经网络用于函数逼近 160
8.4.2 量子神经元实现非线性映射的实验验证 161
思考题 162
参考文献 162
第9章 量子遗传算法 164
9.1 量子遗传算法基础 164
9.1.1 量子比特编码 164
9.1.2 量子旋转门策略 165
9.1.3 量子变异操作 166
9.1.4 量子交叉操作 166
9.1.5 算法描述 167
9.1.6 算法实现及性能测试 168
9.2 改进量子遗传算法 168
9.2.1 改进思路 168
9.2.2 算法流程 168
9.2.3 算法实现及性能测试 170
9.3 量子遗传算法的其他改进形式 172
9.3.1 改进的模拟退火算法 172
9.3.2 分组量子遗传算法 174
9.3.3 混沌量子免疫遗传算法 175
9.4 应用实例 177
9.4.1 基于量子遗传算法的认知无线电频谱共享 177
9.4.2 基于量子遗传算法的MIMO-OFDM系统信号检测 180
思考题 182
参考文献 183
第10章 量子免疫算法 184
10.1 量子免疫算法基础 184
10.1.1 量子比特编码 184
10.1.2 量子门更新 185
10.2 量子免疫克隆算法 187
10.2.1 量子种群 187
10.2.2 观测操作 188
10.2.3 克隆操作 188
10.2.4 免疫遗传操作 188
10.2.5 选择操作 189
10.3 量子免疫克隆算法的改进 189
10.3.1 编码方案的改进 189
10.3.2 变异操作的改进 190
10.3.3 算法步骤 191
10.3.4 算法性能测试及结果分析 191
10.4 混沌量子免疫克隆算法 195
10.4.1 种群初始化 196
10.4.2 克隆操作 197
10.4.3 变异操作 198
10.4.4 选择操作 199
10.4.5 算法步骤 200
10.4.6 算法性能测试及结果分析 200
10.5 免疫算法的应用 205
10.5.1 基于混沌量子免疫克隆算法的压缩感知数据重构 205
10.5.2 基于混沌量子免疫克隆算法的OMP数据重构 206
思考题 210
参考文献 211
第11章 量子群智能算法 213
11.1 量子粒子群算法 213
11.1.1 基于概率幅的量子粒子群算法 213
11.1.2 基于量子行为的粒子群算法 215
11.1.3 量子粒子群算法的改进 216
11.1.4 算法性能测试 219
11.2 量子蚁群优化算法 223
11.2.1 二进制编码的量子蚁群优化算法 223
11.2.2 连续量子蚁群优化算法 225
11.2.3 量子蚁群优化算法的改进策略 227
11.2.4 算法性能测试 229
11.3 量子菌群优化算法 231
11.3.1 量子染色体与量子二进制编码 231
11.3.2 量子细菌趋化 232
11.3.3 量子细菌繁殖 232
11.3.4 量子迁徙 233
11.3.5 量子菌群优化算法流程 233
11.3.6 量子菌群优化算法性能测试 233
11.3.7 自适应量子菌群优化算法 238
11.4 应用实例 239
11.4.1 基于量子粒子群算法的认知无线电频谱分配 239
11.4.2 基于量子蚁群优化算法的LTE系统信号检测 242
11.4.3 量子菌群优化算法求解组合优化问题 246
11.4.4 基于量子菌群优化算法的5G移动通信系统中信道估计 249
思考题 253
参考文献 253
第12章 量子机器学习 255
12.1 量子机器学习概述 255
12.1.1 量子机器学习的发展 255
12.1.2 量子机器学习原理 257
12.2 基于线性代数的量子机器学习 258
12.2.1 算法的基本原理 258
12.2.2 线性方程组的量子算法 259
12.2.3 复杂度对比 260
12.2.4 算法讨论和扩展 261
12.3 量子主成分分析 262
12.3.1 量子主成分分析原理 262
12.3.2 量子主成分分析的应用 264
12.3.3 算法讨论 265
12.4 量子支持向量机 265
12.4.1 支持向量机 266
12.4.2 量子内积评估 267
12.4.3 核矩阵的模拟 267
12.4.4 量子*小二乘支持向量机 268
12.4.5 分类 269
12.4.6 核矩阵压缩和误差分析 270
12.4.7 非线性支持向量机 271
12.4.8 总结 271
12.5 深度量子学习 271
12.5.1 基于量子采样的梯度估计 273
12.5.2 基于量子幅度估计的梯度估计 275
12.5.3 并行算法 275
12.5.4 数值结果 276
12.5.5 总结 278
思考题 279
参考文献 279
展开全部

作者简介

李飞同志1985年加入中国共产党,曾担任学校直属党支部负责人、机关党委委员,现为南京邮电大学党委委员、通信与信息工程学院党委书记,教授、博士生导师。1987年毕业于南京邮电学院无线电工程系,1990年获南京邮电学院通信与电子系统专业硕士学位,2005年获南京邮电大学信号与信息处理专业博士学位。主要从事数字信号处理、通信原理与技术的教学科研工作,研究方向为量子信息处理,通信信号处理。近几年在《电子学报》《电子与信息学报》等国内核心期刊和IJCNN、ISNN等国际学术会议上发表论文20余篇,其中10余篇被SCI、EI、ISTP收录,完成国家和省级基金项目多项。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航