- ISBN:9787115593382
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 开本:16开
- 页数:276
- 出版时间:2022-08-01
- 条形码:9787115593382 ; 978-7-115-59338-2
本书特色
1.内容经典,例题丰富,配备微课讲解重点难点 2.以二维码方式扩展阅读内容,既体现数学严谨的思维逻辑,又反映数学之美。 3.细化考研题目。配套辅导教材将细致讲解考研题目,培养学生的逻辑思维能力。
内容简介
本书是按照教育部大学数学教学指导委员会的基本要求,充分吸取当前优秀高等数学教材的精华,并结合编者多年来的教学实践经验,针对当前学生的知识结构和习惯特点编写而成。全书分为上、下两册。本书为上册,是一元函数微积分部分,共4章,主要内容包括函数、极限与连续,一元函数微分学及其应用,一元函数积分学及其应用,微分方程,每节前面配有课前导读,核心知识点配备微课,每章后面附有本章小结、拓展阅读和章节测试。
本书注重知识点的引入方法,使之符合认知规律,易于读者接受,同时,本书精炼了主要内容,使结构更加简洁,思路更加清晰.本书还注重知识的连贯性、例题的多样性,以及习题的丰富性、层次性,使读者在学习数学知识的同时拓宽了视野,欣赏数学之美。
本书可作为高等院校理工科各专业的教材,也可作为社会从业人员的自学参考用书。
目录
第 一节 集合与函数 1
一、集合的概念 1
二、常用函数 4
习题1-1 9
第 二节 数列极限的定义与计算 10
一、数列极限的概念 10
二、数列极限的计算 13
习题1-2 15
第三节 函数极限的定义与计算 16
一、自变量趋于无穷大时的极限 16
二、自变量趋于有限值时的极限 18
三、函数极限的计算方法 21
习题1-3 23
第四节 极限性质 24
*一、利用极限定义证明 24
二、数列极限的性质 25
三、函数极限的性质 26
*四、极限运算法则的证明 28
习题1-4 30
第五节 两个重要极限 30
一、夹逼定理 31
二、第 一重要极限 33
三、单调有界收敛定理 35
四、第 二重要极限 36
习题1-5 38
第六节 无穷小与无穷大 39
一、无穷小 40
二、无穷大 41
三、无穷小与无穷大的关系 42
四、无穷小的比较 42
五、等价无穷小的应用 44
习题1-6 45
第七节 函数的连续性及其性质 46
一、连续的概念 47
二、函数的间断点 49
三、初等函数的连续性 52
四、闭区间上连续函数的性质 54
习题1-7 56
本章小结 59
章节测试一 61
拓展阅读 63
第 二章 一元函数微分学及其应用 65
第 一节 导数的概念及基本求导公式 65
一、割线与切线 65
二、导数的定义 66
三、简单函数的求导 67
四、左、右导数 68
五、切线与法线方程 69
六、函数的可导性与连续性的关系 70
七、函数的和、差、积、商的求导法则 71
八、反函数的求导法则 72
九、求导公式与基本求导法则 73
习题2-1 74
第 二节 导数的计算法则 75
一、复合函数的求导法则 76
二、高阶导数 78
三、隐函数的导数 81
四、由参数方程确定的函数的导数 82
*五、相关变化率 84
习题2-2 84
第三节 微分的概念与应用 88
一、微分的定义 88
二、基本初等函数的微分公式及微分法则 90
三、微分的几何意义 92
四、近似计算 92
习题2-3 93
第四节 微分中值定理及其应用 95
一、罗尔定理 96
二、拉格朗日(Lagrange)中值定理 98
三、柯西中值定理 100
四、洛必达(L′Hospital)法则 100
习题2-4 103
*第五节 泰勒中值定理 105
一、多项式逼近函数 105
二、麦克劳林公式 108
三、泰勒公式的应用 109
习题2-5 111
第六节 函数的性态与图形 111
一、函数单调性的判别 112
二、函数的极值及其求法 115
三、曲线的凹凸性与拐点 118
四、曲线的渐近线 121
五、函数图形的描绘 122
习题2-6 124
第七节 微分学的实际应用 126
一、**大值、**小值 126
二、曲率 128
习题2-7 133
本章小结 135
章节测试二 137
拓展阅读 139
第三章 一元函数积分学及其应用 143
第 一节 不定积分的概念与性质 143
一、原函数 143
二、不定积分 143
三、基本积分公式 145
四、不定积分的性质 146
习题3-1 148
第 二节 不定积分的换元法与分部法 149
一、第 一类换元法(凑微分法) 149
二、第 二类换元法 155
三、分部积分法 158
习题3-2 161
*第三节 有理函数的不定积分 164
一、真分式的分解 164
二、有理函数的不定积分 165
三、三角函数的有理式的不定积分 166
四、可化为有理函数的简单无理根式的
不定积分 167
习题3-3 168
第四节 定积分的概念与性质 169
一、实例分析 170
二、定积分的定义 171
三、定积分的几何意义 173
四、定积分的性质 174
习题3-4 177
第五节 微积分基本定理 178
一、变速直线运动的路程 178
二、积分上限函数 179
三、微积分基本定理 182
习题3-5 184
第六节 定积分的换元法和分部法 186
一、定积分的换元法 186
二、定积分的分部法 190
习题3-6 193
第七节 定积分的几何应用与物理应用 195
一、平面图形的面积 195
二、空间立体的体积 201
三、曲线的弧长 205
*四、定积分在物理上的应用举例 207
习题3-7 209
第八节 反常积分 211
一、无限区间上的反常积分 211
二、无界函数的反常积分(瑕积分) 214
习题3-8 216
本章小结 217
章节测试三 219
拓展阅读 221
第四章 微分方程 227
第 一节 微分方程的概念 227
一、微分方程的引例 227
二、微分方程的基本概念 229
习题4-1 232
第 二节 一阶微分方程 233
一、可分离变量方程 233
二、齐次方程 234
三、一阶线性微分方程 236
习题4-2 239
第三节 二阶微分方程 240
一、可降阶的二阶微分方程 240
二、线性微分方程解的结构 242
三、二阶常系数齐次线性微分方程的解法 244
*四、n 阶常系数齐次线性微分方程的解法 247
五、二阶常系数非齐次线性微分方程的解法 248
习题4-3 250
*第四节 微分方程的实际案例 252
一、一阶微分方程的实际案例 252
二、二阶微分方程的实际案例 255
习题4-4 258
本章小结 259
章节测试四 261
拓展阅读 263
习题答案 266
作者简介
殷俊锋,同济大学,教授,博导,上海市浦江人才,荣获中国数学会计算数学分会应用数值代数奖,在国际期刊发表30余篇高质量论文。 张弢,2000年9月开始在同济大学教授公共课高等数学A,高等数学B,高等数学C等不同种类的公共基础课,同时担任数学系专业课数学分析、实变函数、泛函分析等授课任务,同时参与数学类精品课程,卓越课程,数学竞赛等项目建设。
-
勒维特之星-大发现系列丛书
¥4.0¥16.0 -
喜马拉雅山珍稀鸟类图鉴
¥27.2¥68.0 -
昆虫的生存之道
¥12.2¥38.0 -
昆虫采集制作及主要目科简易识别手册
¥15.0¥50.0 -
古文诗词中的地球与环境事件
¥8.7¥28.0 -
声音简史
¥21.3¥52.0 -
不匹配的一对:动物王国的性别文化
¥16.7¥42.8 -
物理学之美-插图珍藏版
¥20.7¥69.0 -
现代物理学的概念和理论
¥18.4¥68.0 -
技术史入门
¥14.4¥48.0 -
几何原本
¥35.6¥93.6 -
改变世界的发现
¥15.4¥48.0 -
图说相对论(32开平装)
¥13.8¥46.0 -
数学的魅力;初等数学概念演绎
¥7.7¥22.0 -
星空探奇
¥14.0¥39.0 -
宇宙与人
¥10.5¥35.0 -
数学专题讲座
¥13.3¥29.0 -
袁隆平口述自传
¥19.9¥51.0 -
为了人人晓得相对论
¥3.9¥13.5 -
一代神话:哥本哈根学派
¥8.1¥15.5