×
超值优惠券
¥50
100可用 有效期2天

全场图书通用(淘书团除外)

关闭
深度学习与目标检测(第2版)

深度学习与目标检测(第2版)

1星价 ¥76.7 (6.5折)
2星价¥76.7 定价¥118.0
暂无评论
图文详情
  • ISBN:9787121444425
  • 装帧:一般胶版纸
  • 册数:暂无
  • 重量:暂无
  • 开本:其他
  • 页数:288
  • 出版时间:2022-11-01
  • 条形码:9787121444425 ; 978-7-121-44442-5

本书特色

从概念到应用剖析基于深度学习的目标检测,涵盖医疗、交通、无人驾驶领域的工程实践《深度学习与目标检测(第2版)》注重深度学习目标检测领域从概念到实例的过渡,概念讲解与实例对应,实例包含医学影像识别、车辆识别等多个领域。 本书从理论和实践两个方面对基于深度学习方法的目标检测技术进行了深入讲解。本书从基础理论出发,层层深入,*终给出了一系列实例应用。对比目前市场上的同类书籍,本书的亮点在于,作者结合自身科研实践中的特定问题,给出了相关理论的应用示例,以及具体的源代码实现,这些都有助于读者加深对算法的理解。相信本书对该领域的初学者和高级用户都有裨益。 浙江大学教授 唐敏 杜鹏老师的这本书没有局限于某种框架,而是用简洁、生动的语言对深度学习的原理进行了深入浅出的讲解,并为读者展示了完整的科学研究和工程实践案例。这是本书与目前市面上流行的介绍TensorFlow、PyTorch等深度学习框架的书籍*大的不同。 新加坡南洋理工大学终身教授,MICCAI 2022共同主席 蔡亦渔 深度学习作为眼下*火热的研究领域之一,获得了极大的关注,目标检测问题则是深度学习要解决的基本问题之一。如何快速入门是很多深度学习从业者面临的棘手问题,我相信,本书能够很好地解决这个问题。本书从深度学习和目标检测原理出发,深入浅出地介绍了相关知识点,提供了非常生动的应用案例,能够帮助读者很好地结合实践。我和苏统华老师相识多年,他作为国内人工智能的**批开拓者,在这个领域有很深的造诣。很高兴看到他为读者呈现前沿的知识,也很感谢他多年来为这个领域作出的贡献。阅读本书并结合相关实例的练习,相信读者能够掌握完整的知识体系并获得应用能力。期待苏统华老师和他的团队为大家带来更多优秀的作品。 NVIDIA CUDA Fellow,山东大学教授 周斌 在计算机视觉领域,目标识别是一个非常有用且有趣的方向。多年来,各国都有很多科研人员倾心于新技术的研究,也取得了不少成绩。这本书沿着目标识别的发展路径,介绍了多个较新的基于深度学习的实践案例,不失为一本系统学习目标识别的好书。 《白话强化学习与PyTorch》作者,博士 高扬 计算机视觉是赋予机器类人智能过程中的一个不可或缺的环节,在其60余年的技术演进中,*近几年的技术发展极大地提升了其类人化程度,而其中起到“助推器”作用的技术就是深度学习。神经网络是深度学习的“根性”,帮助机器在图像和视频中发现感兴趣区域“在哪里”“是什么”是其*为根本的任务。本书用通俗的语言介绍了深度学习的发展简史、构成深度神经网络的基本单元、针对目标检测的模型演化及其在医疗、平安城市、自动驾驶领域的应用,内容翔实。对于想了解人工智能在计算机视觉领域发展现状的读者,本书不失为一本上佳的入门读物。 计算机视觉资深专家,博士 谢迪

内容简介

本书的写作初衷是,从学者的角度,用一种通俗易懂的方式,将基于深度学习的目标检测的相关论文中的理论和方法呈现给读者,同时针对作者在深度学习教学过程中遇到的难点,进行深入的分析和讲解。本书侧重对卷积神经网络的介绍,而深度学习的内容不止于此。所以,作者将深度学习分为有监督学习、无监督学习和强化学习三类,将图像分类、目标检测、人脸识别、语音识别、双向生成对抗网络和AlphaGo等应用场景归入不同的类别,并分别对其原理进行了概括性的讲解。本书适合有一定深度学习或目标检测学习基础的学生、研究者、从业者阅读。

目录

第1章 深度学习概述 2
1.1 深度学习发展简史 2
1.2 有监督学习 4
1.2.1 图像分类 4
1.2.2 目标检测 6
1.2.3 人脸识别 10
1.2.4 语音识别 13
1.3 无监督学习 17
1.3.1 无监督学习概述 18
1.3.2 双向生成对抗网络 18
1.4 强化学习 21
1.4.1 AlphaGo 22
1.4.2 AlphaGo Zero 24
1.5 小结 25
参考资料 25
第2章 深度神经网络 28
2.1 神经元 28
2.2 感知机 31
2.3 前向传递 32
2.3.1 前向传递的流程 33
2.3.2 激活函数 34
2.3.3 损失函数 38
2.4 后向传递 41
2.4.1 后向传递的流程 41
2.4.2 梯度下降 41
2.4.3 参数修正 43
2.5 防止过拟合 45
2.5.1 dropout 46
2.5.2 正则化 46
2.6 小结 47
第3章 卷积神经网络 48
3.1 卷积层 49
3.1.1 valid卷积 49
3.1.2 full卷积 51
3.1.3 same卷积 52
3.2 池化层 53
3.3 反卷积 54
3.4 感受野 56
3.5 卷积神经网络实例 57
3.5.1 LeNet-5 58
3.5.2 AlexNet 60
3.5.3 VGGNet 63
3.5.4 GoogLeNet 66
3.5.5 ResNet 76
3.5.6 MobileNet 77
3.6 小结 79
进 阶 篇
第4章 两阶段目标检测方法 82
4.1 R-CNN 82
4.1.1 算法流程 82
4.1.2 训练过程 83
4.2 SPP-Net 87
4.2.1 网络结构 87
4.2.2 空间金字塔池化 88
4.3 Fast R-CNN 89
4.3.1 感兴趣区域池化层 90
4.3.2 网络结构 91
4.3.3 全连接层计算加速 92
4.3.4 目标分类 93
4.3.5 边界框回归 94
4.3.6 训练过程 95
4.4 Faster R-CNN 99
4.4.1 网络结构 100
4.4.2 RPN 101
4.4.3 训练过程 107
4.5 R-FCN 109
4.5.1 R-FCN网络结构 110
4.5.2 位置敏感的分数图 111
4.5.3 位置敏感的RoI池化 111
4.5.4 R-FCN损失函数 113
4.5.5 Caffe网络模型解析 113
4.5.6 U-Net 117
4.5.7 SegNet 118
4.6 Mask R-CNN 119
4.6.1 实例分割简介 119
4.6.2 COCO数据集的像素级标注 121
4.6.3 网络结构 121
4.7 小结 125
参考资料 125
第5章 单阶段目标检测方法 126
5.1 SSD 126
5.1.1 default box 126
5.1.2 网络结构 127
5.1.3 Caffe网络模型解析 128
5.1.4 训练过程 137
5.2 RetinaNet 138
5.2.1 FPN 139
5.2.2 聚焦损失函数 140
5.3 RefineDet 142
5.3.1 网络模型 142
5.3.2 Caffe网络模型解析 144
5.3.3 训练过程 153
5.4 YOLO 154
5.4.1 YOLO v1 154
5.4.2 YOLO v2 157
5.4.3 YOLO v3 159
5.5 目标检测算法应用场景举例 161
5.5.1 高速公路坑洞检测 161
5.5.2 息肉检测 162
5.6 小结 163
参考资料 164
应 用 篇
第6章 肋骨骨折检测 166
6.1 国内外研究现状 166
6.2 解决方案 168
6.3 预处理 168
6.4 肋骨骨折检测 169
6.5 实验结果分析 170
6.6 小结 172
参考资料 172
第7章 肺结节检测 174
7.1 国内外研究现状 174
7.2 总体框架 176
7.2.1 肺结节数据集 176
7.2.2 肺结节检测难点 177
7.2.3 算法框架 177
7.3 肺结节可疑位置推荐算法 178
7.3.1 CT图像的预处理 179
7.3.2 肺结节分割算法 180
7.3.3 优化方法 182
7.3.4 推断方法 184
7.4 可疑肺结节定位算法 185
7.5 实验结果与分析(1) 186
7.5.1 实验结果 186
7.5.2 改进点效果分析 186
7.6 假阳性肺结节抑制算法 188
7.6.1 假阳性肺结节抑制网络 188
7.6.2 优化策略 192
7.6.3 推断策略 194
7.7 实验结果与分析(2) 194
7.7.1 实验结果 194
7.7.2 改进点效果分析 195
7.7.3 可疑位置推荐算法与假阳性抑制算法的整合 196
7.8 小结 197
参考资料 197
第8章 车道线检测 199
8.1 国内外研究现状 199
8.2 主要研究内容 201
8.2.1 总体解决方案 201
8.2.2 各阶段概述 202
8.3 车道线检测系统的设计与实现 205
8.3.1 车道线图像数据标注与筛选 206
8.3.2 车道线图片预处理 207
8.3.3 车道线分割模型训练 211
8.3.4 车道线检测 220
8.3.5 车道线检测结果 224
8.4 车道线检测系统性能测试 224
8.4.1 车道线检测质量测试 224
8.4.2 车道线检测时间测试 226
8.5 小结 226
参考资料 227
第9章 交通视频分析 228
9.1 国内外研究现状 229
9.2 主要研究内容 230
9.2.1 总体设计 231
9.2.2 精度和性能要求 231
9.3 交通视频分析 232
9.3.1 车辆检测和车牌检测 232
9.3.2 车牌识别功能设计详解 234
9.3.3 车辆品牌及颜色的识别 242
9.3.4 目标跟踪设计详解 243
9.4 系统测试 246
9.4.1 车辆检测 247
9.4.2 车牌检测 250
9.4.3 车牌识别 252
9.4.4 车辆品牌识别 255
9.4.5 目标跟踪 257
9.5 小结 258
参考资料 258
第10章 道路坑洞检测 260
10.1 系统流程 260
10.2 道路坑洞图像生成 262
10.2.1 坑洞生成网络 262
10.2.2 遮罩生成方法 263
10.2.3 图像融合 264
10.2.4 基于增广训练集的目标检测 265
10.3 实验与分析 266
10.3.1 影响因素 267
10.3.2 数据增广方法对比 268
10.3.3 边缘提取方法对比 270
10.3.4 图像融合方法对比 271
10.3.5 目标检测 273
10.4 小结 274
参考资料 274
展开全部

作者简介

杜鹏,博士,华为昇腾AI技术专家,主要研究方向为异构计算、计算机图形学、人工智能等,曾在韩国科学技术院、新加坡南洋理工大学、杭州电子科技大学从事科研与教学工作,在SIGGRAPH、 CVPR、ICCV等国际有名会议发表论文十余篇。苏统华,博士, 哈尔滨工业大学副教授、软件学院副院长,主要研究领域包括大规模模式识别与手写汉字识别、深度学习方法与GPU计算等。作为自然手写体中文文本识别的开拓者,建立领域内抢先发售手写中文库(HIT-MW库)。该库为国内外约200家科研院所采用,获得两个国际手写汉字识别竞赛**名。王波,主要从事位姿估计、图像分割/生成等计算机视觉算法研究与应用,研究成果发表在CVPR、AAAI等国际有名学术会议上。谌明,博士,2004年加入美国道富集团, 2011年加入浙江核新同花顺网络信息股份有限公司并任首席技术官,推动了包括计算机视觉、语音技术、自然语言处理、机器学习等在金融、医疗等领域的商业化落地。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航