- ISBN:9787030733498
- 装帧:一般胶版纸
- 册数:暂无
- 重量:暂无
- 开本:B5
- 页数:404
- 出版时间:2022-11-01
- 条形码:9787030733498 ; 978-7-03-073349-8
内容简介
本书针对数字农业与智慧农业的发展需求,综合运用系统分析原理和定量建模技术,以农作系统中"品种-环境-技术-生长"的动态关系为主线,全面介绍了有关作物模拟模型与数字作物系统的基本原理、研究方法、关键技术和应用系统,并展望了未来发展趋势与应用前景,突出了基于生理生态过程的作物生长与生产力形成模拟模型,基于模拟模型的作物管理决策技术以及数字作物模拟与设计系统,为作物生产力预测预警、气候变化效应评估、管理方案优化设计、适宜品种性状筛选等提供了定量化和智能化工具,对于保障国家粮食安全与发展现代农业等具有重要意义。全书在框架结构与内容体系上兼顾知识性与前沿性、机理性与应用性,反映了作者团队在作物系统模拟领域的近期新研究成果及国际上的近期新发展趋势。
目录
前言
第1章作物模拟发展概述1
1.1作物模拟的产生与发展1
1.1.1作物模拟的定义1
1.1.2作物模拟模型的类型2
1.1.3作物模拟的发展历程3
1.1.4作物模拟不同学派的发展特点5
1.2作物模拟的主要特征7
1.2.1作物系统模拟的意义7
1.2.2作物生长模型的基本特征7
1.2.3生长模拟与生长分析的比较8
1.2.4生长模型与统计模型的比较8
1.3作物模拟的功能与作用9
1.3.1作物模型的功能9
1.3.2作物模型的应用领域10
1.3.3作物模型与其他技术的耦合10
第2章作物模拟原理与方法14
2.1作物生产系统特征分析14
2.1.1作物生长系统分析方法14
2.1.2作物生产系统的等级性15
2.1.3作物生产系统的水平和过程16
2.2作物模拟的数据支撑21
2.2.1历史资料获取21
2.2.2模拟支持研究22
2.3作物关系定量表达23
2.3.1模拟研究的尺度23
2.3.2析因法与系数化24
2.3.3遗传参数25
2.4作物模拟模型研制程序26
2.4.1模型选择与系统定义26
2.4.2资料获取与算法构建26
2.4.3模块设计与模型实现27
2.4.4模型检验与改进完善28
2.5作物情景模拟技术31
2.5.1作物情景模拟思路31
2.5.2作物情景模拟应用32
第3章作物阶段发育与器官建成模拟35
3.1作物温光反应与生理发育时间35
3.1.1发育阶段的定义与划分36
3.1.2阶段发育的生理因子与概念模式36
3.1.3作物温光反应的模拟37
3.2生理发育时间与阶段预测45
3.2.1每日热敏感性45
3.2.2生理发育时间46
3.2.3顶端发育阶段的预测46
3.2.4物候期的预测47
3.3作物个体器官建成模拟48
3.3.1顶端原基的分化48
3.3.2叶片的出现50
3.3.3根系与茎秆的生长53
3.3.4籽粒发育与衰老55
3.4作物群体器官建成58
3.4.1群体叶面积59
3.4.2分蘖动态与成穗61
第4章作物光合作用与同化物积累模拟64
4.1冠层光能分布与截获64
4.1.1大气上界的光合有效辐射64
4.1.2冠层顶部的光合有效辐射65
4.1.3冠层内光的分布与吸收65
4.2叶片和冠层光合作用66
4.2.1单叶光合作用67
4.2.2冠层光合作用68
4.2.3光合作用影响因子70
4.2.4呼吸作用76
4.3同化物积累与生物量79
4.3.1群体净同化量79
4.3.2群体干物质积累80
第5章作物籽粒产量与品质形成模拟81
5.1作物籽粒产量形成模型81
5.1.1日同化量的分配82
5.1.2作物各器官干物质增长87
5.2作物籽粒品质形成模型89
5.2.1籽粒蛋白质形成模型89
5.2.2籽粒淀粉形成模型95
第6章作物温度胁迫效应模拟99
6.1作物温度胁迫效应99
6.1.1我国作物温度胁迫时空特征100
6.1.2作物温度胁迫的生理效应104
6.2作物低温胁迫响应模拟107
6.2.1作物生长模型对低温胁迫响应能力的比较107
6.2.2低温胁迫对作物生长发育及产量形成影响的模拟111
6.3作物高温胁迫响应模拟118
6.3.1作物生长模型对高温胁迫响应能力的比较118
6.3.2高温胁迫对作物生长发育和产量形成影响的模拟119
第7章作物水分关系模拟128
7.1土壤-作物水分模型描述128
7.1.1土壤水分模型的基本公式128
7.1.2作物对降水的截留129
7.1.3地表径流的计算129
7.1.4降水或灌溉的入渗130
7.1.5农田蒸散的算法130
7.1.6根系吸水函数131
7.1.7层间水分再分配132
7.1.8土壤水分特征值的估算132
7.2水分影响因子133
7.2.1水分胁迫对作物生长过程的影响133
7.2.2水分影响因子计算142
7.3模型计算与验证145
7.3.1计算流程145
7.3.2模型验证146
第8章作物养分动态模拟150
8.1土壤氮素动力学150
8.1.1土壤无机态氮的淋洗量151
8.1.2矿化与固定(生物固持)152
8.1.3作物残留与还田秸秆分解155
8.1.4硝化作用与反硝化作用156
8.1.5铵的黏土矿物固定与释放、吸附与解吸157
8.2土壤磷素的动态模拟158
8.2.1土壤有效磷基本平衡模型158
8.2.2土壤有效磷各组分的动态模拟159
8.3土壤钾素的动态模拟161
8.3.1土壤有效钾基本平衡模型161
8.3.2土壤有效钾各组分的动态模拟161
8.4养分吸收与分配163
8.4.1氮素的吸收与分配动态163
8.4.2磷素的吸收与分配动态167
8.4.3钾素的吸收与分配动态170
8.5养分效应因子173
8.5.1氮效应因子174
8.5.2磷效应因子174
8.5.3钾效应因子174
8.5.4养分亏缺因子175
第9章作物形态结构模拟与可视化表达176
9.1作物形态结构模型的构建176
9.1.1叶片生长的动态模拟176
9.1.2叶鞘长度的动态模拟183
9.1.3节间长度和宽度的动态模拟185
9.1.4茎叶夹角的动态模拟185
9.1.5叶曲线的动态模拟186
9.1.6穗生长的动态模拟188
9.2作物结构-功能模型的构建193
9.2.1作物单位器官干物质分配的动态模拟193
9.2.2作物单位器官干物质增长的动态模拟195
9.2.3作物单位叶片叶面积的模拟196
9.3作物形态结构的可视化表达197
9.3.1作物器官的可视化表达197
9.3.2作物个体的可视化表达203
9.3.3作物群体的可视化表达204
9.3.4碰撞检测技术及效果展示209
第10章作物模型的不确定性分析214
10.1模型参数的不确定性214
10.1.1模型参数的敏感性分析215
10.1.2模型参数的估算方法217
10.1.3模型参数不确定性的量化221
10.2模型输入数据的不确定性224
10.2.1气象数据输入的不确定性224
10.2.2土壤数据输入的不确定性226
10.2.3管理措施数据输入的不确定性229
10.3模型算法的不确定性229
10.3.1模型算法的不确定性量化230
10.3.2作物模型不同来源不确定性的比较231
第11章作物模型集成构造与辅助建模234
11.1作物模型集成构造的概念与内涵234
11.1.1作物建模知识库235
11.1.2作物模型软件组件库236
11.1.3作物生长模型集成构造236
11.2作物生长建模通用知识框架237
11.2.1作物生长建模通用概念模型的组分分析238
11.2.2作物生长子模型分析与算法框架240
11.3作物模型集成构造的原理244
11.3.1作物模型的表示与映射245
11.3.2作物生长集成建模的构造原理249
11.4作物生长集成建模方法253
11.4.1基于概念的模型结构集成253
11.4.2基于组件的模型动态组装254
11.4.3模型算法动态集成256
11.4.4模型参数集成与校正257
11.5作物生长集成建模辅助系统与建模案例257
11.5.1ICMCS结构258
11.5.2ICMCS主要功能261
11.5.3基于ICMCS的小麦生长模型构建案例263
第12章作物模型与空间信息耦合267
12.1作物模型与地理信息系统(GIS)耦合267
12.1.1作物模型与GIS耦合的基本策略267
12.1.2作物模型与GIS耦合的尺度效应272
12.1.3作物模型与GIS耦合的软件工具273
12.2作物模型与遥感(RS)耦合274
12.2.1作物模型与遥感耦合机制275
12.2.2作物模型与遥感耦合方法277
12.3作物生产力的时空预测281
12.3.1基于时空大数据的作物生产力预测282
12.3.2基于机器学习的作物生产力时空预测282
第13章作物生产力分析与评估284
13.1作物层次生产力预测284
13.1.1不同层次生产力的划分284
13.1.2不同层次生产力的概念及估算方法285
13.2作物产量差估算287
13.2.1产量差的提出与发展287
13.2.2产量差的估算方法287
13.2.3产量差的划分288
13.3作物产量影响要素的贡献率评估289
13.4粮食安全预测预警293
13.4.1作物供给量模拟与预测方法293
13.4.2粮食需求量模拟295
13.4.3粮食供需平衡与安全保障296
第14章作物模拟与决策支持299
14.1气候变化效应评估299
14.1.1未来气候情景生成300
14.1.2气候变化对作物生产力影响的定量评估301
14.2作物生产管理方案的优化310
14.2.1播期310
14.2.2氮肥运筹312
14.2.3综合管理方案315
14.3作物理想品种设计316
14.3.1作物基因效应模拟与品种遗传参数设计316
14.3.2基于模型的作物株型设计319
第15章数字作物平台的构建与实现322
15.1作物生长模拟与决策支持系统322
15.1.1系统结构设计322
15.1.2系统主要功能模块324
15.1.3系统的实现与示例325
15.2作物生长可视化系统331
15.2.1系统结构设计331
15.2.2系统主要功能模块333
15.2.3系统的实现与示例334
15.3基于模型与GIS的作物生产力预测预警系统339
15.3.1系统结构设计340
15.3.2系统主要功能模块340
15.3.3系统的实现与示例343
15.4基于模型与遥感的作物生长监测与生产力预测系统347
15.4.1系统结构设计348
15.4.2系统主要功能模块348
15.4.3系统的实现与示例348
15.5数字作物综合应用平台350
15.5.1平台架构设计351
15.5.2平台主要功能模块352
15.5.3平台的实现与示例352
第16章作物模拟与数字作物前景展望356
16.1数字作物研究方向356
16.1.1量质协同形成模拟356
16.1.2作物生长虚拟表达357
16.1.3功能基因效应模拟359
16.1.4土壤质量关系模拟360
16.1.5极端气候效应模拟361
16.1.6多模型耦合与高性能智能计算361
16
节选
第1章作物模拟发展概述 作物模拟研究自20世纪60年代由荷兰的 de Wit(1965)和美国的 Duncan等(1967)开创以来,随着系统科学和计算机技术的快速发展及作物学、土壤学、大气科学等知识的不断积累,发展十分迅速,经历了从定性的概念模型到定量的模拟模型、从单一的生理生态过程模型到完整的作物生长与产量形成的综合性模拟模型的发展过程,并逐步协调了模型的机理性与预测性之间的矛盾,使作物生长模拟从萌芽逐步走向成熟。进入90年代以来,作物生长模型开始与其他农业信息技术,如“3S”技术[地理信息系统(GIS)、遥感(RS)、全球定位系统(GPS)的统称和集成]、决策支持技术及网络技术等相耦合,在现代农业研究与应用领域中发挥日益重要的作用,呈现出广阔的发展和应用前景。本章主要介绍作物模拟的基本概念、发展历程、内涵特征及功能作用,为了解作物模拟技术原理及应用前景奠定基础。 1.1作物模拟的产生与发展 作物模拟是一门新兴的交叉学科,融合了作物生理生态研究的重大进展。它是以系统分析方法和计算机模拟技术来定量描述作物生长、发育和产量形成的过程及其对环境和管理技术的响应,是作物生理生态知识的高度综合与有效集成,有助于理解、预测和调控作物生长发育及其与环境和管理技术之间的关系(朱艳等,2020;Penning de Vries et al.,1989),是数字农业与智慧农业的核心内容之一。 1.1.1作物模拟的定义 农业生产系统是一个复杂而独*的多因子动态系统,受基因型、环境和管理技术等多种因素的影响,具有显著的时空变异性和区域性,从而使得农业生产管理专家难以综合考虑多因子互作来预测农业生产趋势并量化生产管理措施。作物模拟(模型)又称为作物生长模拟(模型)或作物系统模拟(模型),是利用系统分析方法和计算机模拟技术,综合作物生理学、生态学、气象学、土壤学和农学等学科的昀新研究成果,对作物生长发育过程及其与环境和管理技术之间的动态关系进行定量描述和预测。因此,作物生长模拟能够克服传统农业生产研究中较强的地域性和时空局限性,为不同条件下的农业生产预测提供有力的定量化工具。在作物生长模拟中,作物生理生态知识是模型建立的关键,系统分析方法是模拟研究的基础,而计算机软件技术则是模型实现不可缺少的辅助工具。作物生长模拟研究的核心是对整个作物生长和生产系统进行知识综合,并对作物生理生态过程进行量化表达(Bouman and van Laar,2006)。 作物生长模拟模型(Crop Growth Simulation Model)是把作物生长过程的各种生理生态机制概括为数学表达式,把其中非结构性问题表达为知识性逻辑关系,通过程序设计形成综合的计算机仿真系统(曹卫星,2008)。作物生长模型具有较强的机理性、系统性和通用性。作物生长模型的成功开发和应用实现了作物生长发育规律由定性描述向定量分析的转化,为作物生产决策支持系统的开发与应用奠定了定量化基础,特别是为数字农业和智慧农业发展提供了关键核心技术。 1.1.2作物模拟模型的类型 作物模拟模型按不同的功能特征及建模的目的和方法大致可以分为经验模型与机理模型、描述模型与解释模型、统计模型与过程模型、应用模型与研究模型等。其中,前一类模型相对简单一些,经验性的成分多一些,注重模型的预测性和应用性;后一类模型则要复杂一些,机理性的成分多一些,强调模型的解释性和研究性。 1.经验(empirical)模型与机理(mechanistic)模型 经验模型建立在数据统计分析的基础上,较少涉及过程性和机理性,偏重模型的预测性和应用性;机理模型对内在过程与机理有较好的阐释,强调模型的解释性和研究性。 2.描述(descriptive)模型与解释(explanatory)模型 描述模型以简单的方式描述一个系统的行为,而对引起行为的机理,模型较少或不予反映,描述模型可以通过测定的试验数据推导出来,其建立过程相对比较简单;解释模型侧重对引起系统行为的机理和过程的定量描述,这些描述即为科学理论和假设的清晰表达,模型是通过综合整个系统的机理和过程描述建立的。例如,解释性的作物生长模型包括光合作用、呼吸作用、同化物积累与分配、形态发生与器官建成、产量与品质形成等过程,作物生长则是这些基本过程的综合结果。建立解释模型,需要对整个系统进行分析,并分别对其整个过程和机理进行定量化表达。 3.统计(statistical)模型与过程(process)模型 统计模型是一种昀常使用的模型,主要通过对数据进行多重回归和拟合来预测系统的表现,其解释性较差,并且局限于试验资料所在地特定的大气环境、土壤条件和品种类型,难以推广到不同的环境条件和品种类型;过程模型用于定量描述生物与非生物的一些基本过程,具有较好的机理性和解释性,适用于不同的环境条件和生产系统。 4.应用(application)模型与研究(research)模型 应用模型主要倾向于应用推广,因而具有便于使用、较为粗放和方向比较单一的特点;研究模型主要用于科研,对其机理性要求较高,因而具有操作复杂、参数较多、灵敏度高等特点。 总体上看,所有作物模拟模型从更微观的层次上都可认为是经验性模型,而从更宏观的层次上又都可看作是机理性模型。因此,任何一个模拟模型都体现了经验性和机理性的相对平衡与协调。 1.1.3作物模拟的发展历程 作物模拟的发展经历了从定性的概念模型到定量的模拟模型,从数量植物生理学中的生理生态过程模拟慢慢发展成为综合的作物生长模拟模型。20世纪60年代以来,随着系统科学和计算机技术的发展及作物学知识的积累,作物模拟研究得到了快速发展,进而促使作物生产系统的综合分析和科学决策也成为现实。作物模型发展的动力主要来源于计算机科学与技术的发展、作物学的知识积累、管理决策的定量要求、农业推广中的技术转移及作物生产系统固有的独*性和变异性。 国际上有关作物模拟研究的发展,大体上可以概括为以下4个主要阶段。 1.过程建模期 20世纪60~80年代,生理生态过程的数量分析与模拟研究的诞生与发展,为作物生长模型的研究奠定了基础。荷兰的 de Wit(1965)及美国的 Duncan等(1967)相继发表了冠层光能截获与群体光合作用的模拟模型,从系统论的角度,以作物生理学和作物生态学为主要学科基础,研究了作物生长发育与光合产量形成的过程及与生态环境因子之间的定量关系,把作物生长过程的各种生态与生理机制概括为简单的数学表达式,成为作物生理生态过程模拟的经典之作。此后的一二十年间,作物模拟研究迅速发展,进一步趋向于系统性、机理性,实现了从不同生育过程的模拟到完整的生长周期的模拟,作物模型在深度与广度上都得到了较好的发展。这一时期,关于作物生长与产量模型的研究以荷兰和美国昀为突出,特别是80年代提出的 CERES(Jones et al.,1986)、GOSSYM(Baker et al.,1983)、SUCROS(Penning de Vries and van Laar,1982)、MACROS(Penning de Vries et al.,1989)等作物模型,都能完整地描述和预测作物生长及产量形成的全过程。在此期间,我国的科学家也开始了作物模拟模型方面的研究工作,并在植物生理生态过程的模拟方面取得了可喜的成绩,初步提出了水稻等作物产量形成模型(黄策和王天铎,1986)。 2.系统模拟期 20世纪80~90年代,在过程模型的基础上,运用整体性系统方法,围绕作物生产系统,构建了作物生长与生产力预测模型,发展了作物-土壤-大气系统的模拟模型。这一时期,作物模拟进一步向机理性和应用性方向拓展。一方面,作物模拟工作者对系统进行不断的分解和细化,如澳大利亚的 Evans和 Vogelmann(2003)及 Buckley和 Earquhar(2004)建立的电子传递速度与光强、大气 CO2浓度、气孔 CO2分压、水汽压等的关系模型,将作物光合作用的模拟深入到了生物化学领域。美国的 Norman和 Arkebauer(1991)提出的 Cupid模型,详细地模拟了每张叶片每分钟的光合、呼吸、蒸腾等过程,在模拟的精度上大大超过了70~80年代的模型。另一方面,模拟研究强调系统的通用性与可靠性,因此对系统的机理性与通用性之间的矛盾表现出一定的困惑和失望。虽然在美国、荷兰、英国、澳大利亚等国家已研制出多种作物的模拟模型及特定作物的不同模拟模型,并开始应用于生产实践,但多数生长模型经过不断扩展和细化,过分偏重理论或假说对生长发育和产量形成等生理过程的解释而缺少必要的验证和广泛的测试。 3.模型应用期 20世纪90年代至21世纪前10年,人们对模型的应用价值和局限性有了比较客观的认识,模型被视为一种启发式的工具,成为整个农业科学领域普遍接受与采用的方法。在此期间,模拟工作者对模型系统进行持续的改进完善和示范应用,在指导作物管理、育种、施肥、灌溉等方面获得了成功的实践。例如, Hearn(1994)研制出棉花决策支持系统 OZCOT,为澳大利亚地区的棉花生产提供风险分析、水分管理和虫害控制等方面的决策咨询。该时期,我国也涌现出若干各具特点、自主研发的作物生长模型及决策系统(Tang et al.,2011;Cao et al.,2002;殷新佑和戚昌瀚,1994),并在模型示范应用方面做了大量的开发研究。另外,20世纪90年代以来,许多研究利用作物模型探索全球气候变化的影响及农业生产可持续发展的策略等(Asseng et al.,1998)。这一时期作物模型还开始与其他信息技术如遥感(RS)、地理信息系统(GIS)、网络技术等相结合,在信息农业和现代农业发展中表现出更好的应用价值(Daly et al.,1994)。 4.算法拓展期 2011年至今,着重提升模型的预测性和可靠性。虽然过去的50年间,作物生长模拟有了长足的发展,但是由于影响作物生长发育的主要因子存在显著的时空变异,因此需要拓展和深化作物生长模型与 GIS、RS技术的耦合机制与方法,以更好地实现区域粮食生产力的准确预测。同时,随着全球变暖,极端气候事件 (如高温、低温、干旱、寡照等)的发生强度和频率不断增强,探讨极端气候条件对作物生长发育与产量品质形成影响的生理机制,提高模型在极端气候环境下的模拟精度,也是目前作物模拟关注的重点之一(Liu et al.,2017)。此外,现代基因测序技术的飞速发展使得作物基因信息的高通量快速获取变成现实,进而为量化作物生长模型中品种遗传参数与基因效应之间的关系奠定了良好基础(Wang et al.,2019;Yin et al.,2018)。因此,利用基因效应定量模拟作物生长模型中的品种遗传参数,探索主要性状基因效应与环境效应之间的互作机制与定量方法,进一步明确不同基因型品种对生态环境及管理措施的响应模式,有效提升作物生长模型对作物表型的预测潜能等,也是目前作物模拟研究的热点。 1.1.4作物模拟不同学派的发展特点 国际上的作物模拟研究基本上可以概括为4个学派,分别以荷兰、美国、澳大利亚和中国为突出代表,尤其是荷兰和美国的作物模拟研究早期在国际上奠定了良好的学术地位,并获得了较高的评价和较大范围的应用。近年来,随着作物模拟研究工作的不断发展和完善,不同学派及国家间的作物模拟研究逐步表现为相互渗透、借鉴与融合。 荷兰作物模拟研究的特点是强调作物生长过程的机理性。20世纪60年代,以 de Wit为首的荷兰学者提出了作物生长动力学学说,并研制出**个完整的作物生长模型 ELCROS,极大地推动了世界作物模拟研究的发展(de Wit et al.,1970)。 ELCROS模型可以根据作物的基本物理、
-
流行草花图鉴
¥3.5¥13.0 -
花园植物1000种彩色图鉴
¥17.9¥39.0 -
(精)中华古树名木(全2册)
¥270.0¥628.0 -
猪病针灸疗法
¥1.4¥5.0 -
蚯蚓养殖实用技术
¥5.4¥20.0 -
图说生姜高效栽培
¥17.9¥29.8 -
茄子病虫害诊断与防治图谱
¥10.6¥23.0 -
居室风水植物
¥11.8¥32.8 -
瓜类蔬菜制种技术
¥2.0¥7.5 -
冬瓜保护地栽培
¥1.6¥6.0 -
图说滑菇高效栽培关键技术
¥2.7¥10.0 -
池塘养鱼 第2版
¥39.6¥46.0 -
土壤综合改良和配方施肥技术与应用
¥22.0¥36.0 -
畜禽饲用豆粕减量替代和低蛋白日粮技术
¥59.8¥98.0 -
土壤改良与耕地质量提升技术
¥16.9¥26.8 -
奶山羊精准饲养技术
¥17.6¥32.0 -
牛羊生产(第二版)
¥37.0¥58.8 -
果树修剪知识与技术
¥21.5¥29.8 -
玩转花器:打造你的四季盆栽花园 (彩图版)
¥42.8¥68.0 -
现代农业种植技术
¥48.4¥88.0