×
暂无评论
图文详情
  • ISBN:9787576605907
  • 装帧:平装-胶订
  • 册数:暂无
  • 重量:暂无
  • 开本:其他
  • 页数:380
  • 出版时间:2023-02-01
  • 条形码:9787576605907 ; 978-7-5766-0590-7

内容简介

tidymodels一组用于建模和机器学习的R语言包。无论你是新手还是拥有多年建模经验,这本实践用书将为数据分析师、商业分析师和数据科学家展示tidymodels框架如何为你的工作提供一致灵活的方法。RStudio的工程师Max Kuhn和Julia Silge展示了通过专注于一种称为tidyverse的R方言来创建模型的方法。采用tidyverse原则的软件共享高层设计理念和低层语法及数据结构,因此学习生态系统的一部分有助于掌握下一部分。你会明白为什么tidymodels框架被人们广泛使用。

目录

Preface Part I. Introduction 1. Software for Modeling Fundamentals for Modeling Software Types of Models Descriptive Models Inferential Models Predictive Models Connections Between Types of Models Some Terminology How Does Modeling Fit into the Data Analysis Process? Chapter Summary 2. A Tiflyverse Primer Tidyverse Principles Design for Humans Reuse Existing Data Structures Design for the Pipe and Functional Programming Examples of Tidyverse Syntax Chapter Summary 3. A Review of R Modeling Fundamentals An Example What Does the R Formula Do? Why Tidiness Is Important for Modeling Combining Base R Models and the Tidyverse The tidymodels Metapackage Chapter Summary Part II. Modeling Basics 4. The Ames Housing Data Exploring Features of Homes in Ames Chapter Summary 5. Spending Our Data Common Methods for Splitting Data What About a Validation Set? Multilevel Data Other Considerations for a Data Budget Chapter Summary 6. Fitting Models with parsnip Create a Model Use the Model Results Make Predictions parsnip-Extension Packages Creating Model Specifications Chapter Summary 7. A Model Workflow Where Does the Model Begin and End? Workflow Basics Adding Raw Variables to the workflow0 How Does a workflow0 Use the Formula? Tree-Based Models Special Formulas and Inline Functions Creating Multiple Workflows at Once Evaluating the Test Set Chapter Summary 8. Feature Engineering with Recipes A Simple recipe() for the Ames Housing Data Using Recipes How Data Are Used by the recipe() Examples of Steps Encoding Qualitative Data in a Numeric Format Interaction Terms Spline Functions Feature Extraction Row Sampling Steps General Transformations Natural Language Processing Skipping Steps for New Data Tidy a recipe() Column Roles Chapter Summary 9. Judging Model Effectiveness Performance Metrics and Inference Regression Metrics Binary Classification Metrics Multiclass Classification Metrics Chapter Summary Part Ill. Tools for Creating Effective Models 10. Resampling for Evaluating Performance The Resubstitution Approach Resampling Methods Cross-Validation Repeated Cross-Validation Leave-One-Out Cross-Validation Monte Carlo Cross-Validation Validation Sets Bootstrapping Rolling Forecasting Origin Resampling Estimating Performance Parallel Processing Saving the Resampled Objects Chapter Summary 11. Comparing Models with Resampling Creating Multiple Models with Workflow Sets Comparing Resampled Performance Statistics Simple Hypothesis Testing Methods Bayesian Methods A Random Intercept Model The Effect of the Amount of Resampling Chapter Summary 12. Model Tuning and the Dangers of Overntting Model Parameters Tuning Parameters for Different Types of Models What Do We Optimize? The Consequences of Poor Parameter Estimates Two General Strategies for Optimization Tuning Parameters in tidymodels Chapter Summary 13. Grid Search Regular and Nonregular Grids Regular Grids Nonregular Grids Evaluating the Grid Finalizing the Model Tools for Creating Tuning Specifications Tools for Efficient Grid Search Submodel Optimization Parallel Processing Benchmarking Boosted Trees Access to Global Variables Racing Methods Chapter Summary 14. Iterative Search A Support Vector Machine Model Bayesian Optimization A Gaussian Process Model Acquisition Functions The tune_bayes() Function Simulated Annealing Simulated An
展开全部

作者简介

马克斯·库恩(Max Kuhn),康涅狄格州格罗顿市辉瑞全球研发非临床统计部主任,在制药和诊断行业已有近20年应用预测模型的经验,他还是很多R包的作者。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航