- ISBN:9787302632726
- 装帧:平装-胶订
- 册数:暂无
- 重量:暂无
- 开本:其他
- 页数:407
- 出版时间:2023-11-01
- 条形码:9787302632726 ; 978-7-302-63272-6
本书特色
本书理论联系实践,深入浅出,知识点全面,通过阅读本书,读者不仅可以理解自然语言处理的知识,还能通过实战项目案例更好地将理论融入实际工作中。
内容简介
本书从自然语言处理基础开始,逐步深入各种自然语言处理的热点前沿技术,使用了Java和Python两门语言精心编排了大量代码实例,契合公司实际工作场景技能,侧重实战。 全书共19章,详细讲解中文分词、词性标注、命名实体识别、依存句法分析、语义角色标注、文本相似度算法、语义相似度计算等内容,同时提供配套完整实战项目,例如对话机器人实战、搜索引擎项目实战、推荐算法系统实战。 本书理论联系实践,深入浅出,知识点全面。通过阅读本书,读者不仅可以理解自然语言处理知识,还能通过实战项目案例更好地将理论融入实际工作中。 本书适合自然语言处理的初学者阅读,有一定经验的算法工程师也可从书中获取很多有价值的知识,并通过实战项目更好地理解自然语言处理的核心内容。
目录
第4章命名实体识别 4.1命名实体识别原理 4.2基于HMM角色标注的命名实体识别 4.2.1中国人名识别 4.2.2地名识别 4.2.3机构公司名识别 4.3基于线性模型的命名实体识别 4.3.1感知器命名实体识别 4.3.2CRF命名实体识别 第5章依存句法分析 5.1依存句法分析原理 5.2HanLP基于神经网络依存句法分析器 第6章语义角色标注 6.1语义角色标注原理 6.2语义角色标注的设计框架 6.2.1生成语义生成树 6.2.2剪枝 6.2.3角色识别 6.2.4角色分类 第7章文本相似度算法 7.1字符串编辑距离 7.1.1算法原理 7.1.2Java代码实现 7.1.3Python代码实现 7.2余弦相似度 7.2.1算法原理 7.2.2Java代码实现 7.2.3Python代码实现 第8章语义相似度计算 8.1《同义词词林》 8.1.1算法原理 8.1.2代码实战 8.2基于深度学习的语义相似度 8.2.1DSSM 8.2.2CNNDSSM 8.2.3LSTMDSSM 第9章词频逆文档频率 9.1TFIDF算法原理 9.2Java代码实现TFIDF 9.3TFIDF的Python代码实现 第10章条件随机场 10.1算法原理 10.2开源工具实战 第11章新词发现与短语提取 11.1新词发现 11.2短语提取 第12章搜索引擎Solr Cloud和Elasticsearch 12.1全文搜索引擎介绍及原理 12.2Lucene搜索引擎 12.3Solr Cloud 12.3.1Solr Cloud介绍及原理 12.3.2Solr Cloud实战 12.4Elasticsearch 12.4.1Elasticsearch介绍及原理 12.4.2Elasticsearch实战 第13章Word2Vec词向量模型 13.1Word2Vec词向量模型介绍及原理 13.2Word2Vec词向量模型实战 13.2.1Spark分布式实现Word2Vec词向量模型 13.2.2谷歌开源Word2Vec工具 第14章文本分类 14.1文本分类介绍及相关算法 14.2朴素贝叶斯算法 14.2.1算法原理 14.2.2源码实战 14.3支持向量机 14.3.1算法原理 14.3.2源码实战 14.4Python开源快速文本分类器FastText 14.4.1FastText框架核心原理 14.4.2FastText和Word2Vec的区别 14.4.3FastText实战 14.5BERT文本分类 14.5.1BERT模型介绍及原理 14.5.2BERT中文文本分类实战 第15章文本聚类 15.1文本聚类介绍及相关算法 15.2Kmeans文本聚类 15.2.1算法原理 15.2.2源码实战 15.3LDA主题词——潜在狄利克雷分布模型 15.3.1算法原理 15.3.2源码实战 第16章关键词提取和文本摘要 16.1关键词提取 16.1.1关键词提取介绍及相关算法 16.1.2基于Python的关键词提取实战 16.1.3基于Java的关键词提取实战 16.2文本摘要 16.2.1文本摘要介绍及相关算法 16.2.2基于Python的文本摘要实战 16.2.3基于Java的文本摘要实战 第17章自然语言模型 17.1自然语言模型原理与介绍 17.2NGram统计语言模型 17.3LSTM神经网络语言模型 第18章分布式深度学习实战 18.1TensorFlow深度学习框架 18.1.1TensorFlow原理和介绍 18.1.2TensorFlow安装部署 18.2MXNet深度学习框架 18.2.1MXNet原理和介绍 18.2.2MXNet安装部署 18.3神经网络算法 18.3.1多层感知器算法 18.3.2卷积神经网络 18.3.3循环神经网络 18.3.4长短期记忆神经网络 18.3.5端到端神经网络 18.3.6生成对抗网络 18.3.7深度强化学习 18.3.8TensorFlow分布式训练实战 18.3.9分布式TensorFlow on Kubernetes集群实战 第19章自然语言处理项目实战 19.1对话机器人项目实战 19.1.1对话机器人原理与介绍 19.1.2基于TensorFlow的对话机器人 19.1.3基于MXNet的对话机器人 19.1.4基于深度强化学习的机器人 19.1.5基于搜索引擎的对话机器人
19.1.6对话机器人的Web服务工程化 19.2搜索引擎项目实战 19.2.1搜索引擎系统架构设计 19.2.2搜索框架技术选型 19.2.3搜索相关度排序 19.2.4搜索综合排序算法 19.2.5搜索内容意图识别和智能纠错 19.2.6搜索智能联想词 19.2.7搜索输入框默认关键词猜你喜欢 19.2.8相关搜索关键词推荐 19.2.9排序学习与NDCG搜索评价指标 19.2.10个性化搜索猜你喜欢 19.2.11搜索此关键词的用户*终购买算法 19.2.12搜索大数据平台及数据仓库建设 19.3推荐算法系统实战 19.3.1推荐系统架构设计 19.3.2推荐数据仓库集市 19.3.3ETL数据处理 19.3.4协同过滤用户行为挖掘 19.3.5ContentBase文本挖掘算法 19.3.6用户画像兴趣标签提取算法 19.3.7基于用户心理学的模型推荐 19.3.8多策略融合算法 19.3.9准实时在线学习推荐引擎 19.3.10Redis缓存处理 19.3.11分布式搜索 19.3.12推荐二次排序算法 19.3.13在线Web实时推荐引擎服务 19.3.14在线AB测试推荐效果评估 19.3.15离线AB测试推荐效果评估 19.3.16推荐位管理平台 参考资料
作者简介
陈敬雷,充电了么创始人,中国首席数据官联盟专家委员。拥有十几年互联网从业经验,在技术领域,尤其在大数据和人工智能方向有丰富的算法工程落地实战经验,其中在猎聘网任职期间主导的推荐算法系统项目获得公司优秀项目奖,推荐效果得到5倍的提升。目前专注于大数据和人工智能驱动的上班族在线教育行业,研发了充电了么App,用深度学习算法、NLP、推荐引擎等技术来高效提升在线学习效率。
-
全图解零基础word excel ppt 应用教程
¥15.6¥48.0 -
有限与无限的游戏:一个哲学家眼中的竞技世界
¥37.4¥68.0 -
硅谷之火-人与计算机的未来
¥12.7¥39.8 -
机器学习
¥59.4¥108.0 -
情感计算
¥66.8¥89.0 -
LINUX企业运维实战(REDIS+ZABBIX+NGINX+PROMETHEUS+GRAFANA+LNMP)
¥48.3¥69.0 -
AI虚拟数字人:商业模式+形象创建+视频直播+案例应用
¥62.9¥89.8 -
LINUX实战——从入门到精通
¥48.3¥69.0 -
UNIX环境高级编程(第3版)
¥164.9¥229.0 -
剪映AI
¥52.8¥88.0 -
数据驱动的工业人工智能:建模方法与应用
¥68.3¥99.0 -
深度学习高手笔记 卷2:经典应用
¥90.9¥129.8 -
纹样之美:中国传统经典纹样速查手册
¥76.3¥109.0 -
UG NX 12.0数控编程
¥24.8¥45.0 -
MATLAB计算机视觉与深度学习实战(第2版)
¥90.9¥128.0 -
UN NX 12.0多轴数控编程案例教程
¥24.3¥38.0 -
微机组装与系统维护技术教程(第二版)
¥37.8¥43.0 -
Go 语言运维开发 : Kubernetes 项目实战
¥38.7¥79.0 -
明解C语言:实践篇
¥62.9¥89.8 -
Linux服务器架设实战(Linux典藏大系)
¥84.5¥119.0