×
PYTORCH深度学习+机器学习

PYTORCH深度学习+机器学习

1星价 ¥373.8 (6.5折)
2星价¥373.8 定价¥575.0
暂无评论
图文详情
  • ISBN:2200059000440
  • 装帧:平装
  • 册数:暂无
  • 重量:暂无
  • 开本:16开
  • 页数:暂无
  • 出版时间:2024-06-01
  • 条形码:2200059000442

内容简介

“PyTorch深度学习指南”丛书循序渐进地详细讲解了与深度学习相关的重要概念、算法和模型,并着重展示了PyTorch是如何实现这些算法和模型的。其共分三卷:编程基础、计算机视觉、序列与自然语言处理。本书为该套丛书的**卷:编程基础。本书主要介绍了梯度下降和PyTorch的Autograd;训练循环、数据加载器、小批量和优化器;二元分类器、交叉熵损失和不平衡数据集;决策边界、评估指标和数据可分离性等内容。本书适用于对深度学习感兴趣,并希望使用PyTorch实现深度学习的Python程序员阅读学习。《PyTorch自动驾驶视觉感知算法实战》全面介绍了自动驾驶系统中深度学习视觉感知的相关知识,包括深度神经网络和深度卷积神经网络的基本理论,深入讲解了自动驾驶中常用的目标检测、语义、实例分割和单目深度估计四种视觉感知任务。《PyTorch自动驾驶视觉感知算法实战》对自动驾驶工程实践中很重要但经常被忽略的知识进行了全面总结,包括多任务模型的损失平衡、Ubuntu操作系统、Anaconda和Docker等环境配置工具、C++开发环境搭建、神经网络压缩、模型导出和量化、TensorRT推理引擎等和部署相关的技术。“PyTorch深度学习指南”丛书循序渐进地详细讲解了与深度学习相关的重要概念、算法和模型,并着重展示了PyTorch是如何实现这些算法和模型的。其共分三卷:编程基础、计算机视觉、序列与自然语言处理。本书为该套丛书的第二卷:计算机视觉。本书主要介绍了深度模型、激活函数和特征空间;Torchvision、数据集、模型和转换;卷积神经网络、丢弃和学习率调度器;迁移学习和微调流行的模型(ResNet、Inception等)等内容。

目录

《PyTorch深度学习指南.卷III,序列与自然语言处理》
《PyTorch高级机器学习实战》
《PyTorch深度学习指南.卷II,计算机视觉》
《PyTorch深度学习指南.卷I,编程基础》
《PyTorch自动驾驶视觉感知算法实战》
展开全部

作者简介

丹尼尔?沃格特?戈多伊是一名数据科学家、开发人员、作家和教师。自2016年以来,他一直在柏林历史*悠久的训练营Data Science Retreat讲授机器学习和分布式计算技术,帮助数百名学生推进职业发展。丹尼尔还是两个Python软件包——HandySpark和DeepReplay的主要贡献者。他拥有在多个行业20多年的工作经验,这些行业包括银行、政府、金融科技、零售和移动出行等。刘斯坦,本科毕业于上海交通大学,硕士毕业于德国慕尼黑工业大学。深度学习资深工程师,从事无人驾驶智能感知系统的研发工作。在德国相关领域从业超过十年,负责无人驾驶系统中多个神经网络模型在量产车的落地以及中国地区的本地化。刘斯坦对深度学习的各个领域不但有着全景式的理解,还具备从数学理论到部署产品线的知识纵深。这种即广又深全面覆盖的知识面,相信能为读者带来更开阔的视野。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航