×
暂无评论
图文详情
  • ISBN:9787030091109
  • 装帧:平装
  • 册数:暂无
  • 重量:暂无
  • 开本:32开
  • 页数:311
  • 出版时间:2001-07-01
  • 条形码:9787030091109 ; 978-7-03-009110-9

内容简介

G.波利亚编著的《数学与猜想》是有名数学家G.波利亚撰写的一部经典名著,书中讨论的是自然科学、特别是数学领域中与严密的论证推理接近不同的一种推理方法——合情推理(即猜想)。本书通过许多古代有名的猜想,讨论了论证方法,阐述了作者的观点:不但要学习论证推理,也要学习合情推理,以丰富人们的科学思想,提高辩证思维能力,本书的例子不仅涉及数学各学科,也涉及到物理学,全书内容丰富,谈古论今,叙述生动,能使人看到数学中真正的奥妙。《数学与猜想》共分两卷,靠前卷为数学中的归纳和类比,第二卷为合情推理模式,此册为靠前卷,主要讲述数学中各种合情推理的实例。本书可供大学数学系师生、中学数学教师,数学研究人员及数学爱好者阅读。

目录

译者的话
序言
对读者的提示
**章归纳方法
引言
1.经验和信念
2.启发性联想
3.支持性联想
4.归纳的态度
第二章一般化、特殊化、类比
1.一般化、特殊化、类比和归纳
2.一般化
3.特殊化
4.类比
5.一般化、特殊化和类比
6.由类比作出的发现
7.类比和归纳
第三章立体几何中的归纳推理
1.多面体
2.支持猜想的**批事实
3.支持猜想的更多事实
4.一次严格的检验
5.验证再验证
6.一种很不同的情形
7.类比
8.空间的分割
9.修改一下问题的提法
10.一般化、特殊化、类比
11.一个类似的问题
12.类似问题的一张表格
13.解决一大批问题有时比解决单独一个问题更容易
14.一个猜想
15.预言与证明
16.再来一次,使它更好
17.归纳法引向演绎法;特例引向一般证明
18.更多的猜想
第四章数论中的归纳方法
1.边长为整数的直角三角形
2.平方和
3.关于四奇数平方和问题
4.考察一个例子
5.把观察结果列成表
6.有什么规则
7.关于归纳发现未知事物的性质
8.关于归纳证据的性质
第五章归纳法杂例
l.函数的展开式
2.近似式
3.极限
4.设法推翻它
5.设法证明它
6.归纳阶段的作用
第六章更一般性的陈述
1.欧拉
2.欧拉的研究报告
3.从实践到抽象的一般观点
4.欧拉研究报告的概述
第七章数学归纳法
1.归纳阶段
2.论证阶段
3.研究的飞跃
4.数学归纳法的技巧
第八章极大和极小
1.模式
2.例子
3.相切的等高线模式
4.两个例子
5.局部变动的模式
6.算术平均与几何平均的定理及其初步推论
第九章物理数学
1.光学解释
2.力学解释
3.反复解释
4.吉恩·伯努利关于捷线的发现
5.阿基米德关于积分法的发现
第十章等周问题
1.笛卡儿的归纳理由
2.潜在的理由
3.物理原因
4.瑞利的归纳理由
5.导出结论
6.证明结论
7.非常密切的关系
8.等周定理的三种形式
9.应用与问题
第十一章更多种类的合情推理
1.猜一猜
2.根据有关情形判定
3.根据一般情形判定
4.提出一个比较简单的猜想
5.背景
6.无穷尽的过程
7.常用的启发性假设
后纪
问题的解答
参考文献
展开全部

作者简介

波利亚,数学家、教育家,曾任美国国家科学院、美国艺术与科学学院院士,匈牙利科学院荣誉院士,伦敦数学会、瑞士数学会、美国工业数学与应用数学学会荣誉会员,法国巴黎科学院通讯院士。出生于匈牙利布达佩斯,1942年移居美国。获布达佩斯Eotvos Lorand大学数学博士学位。著有《数学的发现》、《数学分析中的问题和定理》、《数学物理中的等周不等式》等。

预估到手价 ×

预估到手价是按参与促销活动、以最优惠的购买方案计算出的价格(不含优惠券部分),仅供参考,未必等同于实际到手价。

确定
快速
导航